1 |
JAIN A K, DUBES R C. Algorithms for clustering data. Englewood Cliffs, USA: Prentice Hall, Inc., 1988.
|
2 |
NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Proceeding of International Conference on Neural Information Processing Systems: Natural and Synthetic. Berlin, Germany: Springer, 2001: 1-11.
|
3 |
宗林林. 多视角聚类研究[D]. 大连: 大连理工大学, 2017.
|
|
ZONG L L. Multi-view clustering research[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
|
4 |
LI Z L, TANG C, LIU X W, et al. Consensus graph learning for multi-view clustering. IEEE Transactions on Multimedia, 2022, 24, 2461- 2472.
doi: 10.1109/TMM.2021.3081930
|
5 |
范瑞东, 侯臣平. 鲁棒自加权的多视图子空间聚类. 计算机科学与探索, 2021, 15(6): 1062- 1073.
|
|
FAN R D, HOU C P. Robust auto-weighted multi-view subspace clustering. Journal of Frontiers of Computer Science & Technology, 2021, 15(6): 1062- 1073.
|
6 |
SHI S J, NIE F P, WANG R, et al. Fast multi-view clustering via prototype graph. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 443- 455.
|
7 |
刘改, 吴峰, 刘诗仪. 基于张量图卷积的多视图聚类. 计算机系统应用, 2022, 31(4): 296- 302.
|
|
LIU G, WU F, LIU S Y. Tensor graph convolution networks for multi-view clustering. Computer Systems & Applications, 2022, 31(4): 296- 302.
|
8 |
JIANG G Q, PENG J J, WANG H B, et al. Tensorial multi-view clustering via low-rank constrained high-order graph learning. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5307- 5318.
doi: 10.1109/TCSVT.2022.3143848
|
9 |
XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 2149-2155.
|
10 |
WU J L, LIN Z C, ZHA H B. Essential tensor learning for multi-view spectral clustering. IEEE Transactions on Image Processing, 2019, 28(12): 5910- 5922.
doi: 10.1109/TIP.2019.2916740
|
11 |
XIE D, GAO Q, DENG S, et al. Multiple graphs learning with a new weighted tensor nuclear norm. Neural Networks, 2021, 133, 57- 68.
doi: 10.1016/j.neunet.2020.10.010
|
12 |
ZHAO Y, YUN Y, ZHANG X, et al. Multi-view spectral clustering with adaptive graph learning and tensor schatten p-norm. Neurocomputing, 2022, 468, 257- 264.
doi: 10.1016/j.neucom.2021.09.052
|
13 |
余瑶, 杜世强, 宋金梅. 面向多视图聚类的低秩张量表示学习. 计算机工程与应用, 2022, 58(13): 154- 163.
|
|
YU Y, DU S Q, SONG J M. Low-rank tensor representation learning for multi-view clustering. Computer Engineering and Applications, 2022, 58(13): 154- 163.
|
14 |
LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171- 184.
doi: 10.1109/TPAMI.2012.88
|
15 |
PARTRIDGE M, JABRI M. Robust principal component analysis[C]//Proceedings of 2002 IEEE Signal Processing Society Workshop. Washington D. C., USA: IEEE Press, 2002: 289-298.
|
16 |
WANG S, CHEN Y, JIN Y, et al. Error-robust low-rank tensor approximation for multi-view clustering. Knowledge-Based Systems, 2021, 215, 106745.
doi: 10.1016/j.knosys.2021.106745
|
17 |
ZHOU D Y, HUANG J Y, SCHÖLKOPF B. Learning from labeled and unlabeled data on a directed graph[C]//Proceedings of the 22nd International Conference on Machine Learning. New York, USA: ACM Press, 2005: 1036-1043.
|
18 |
KILMER M E, MARTIN C D. Factorization strategies for third-order tensors. Linear Algebra and Its Applications, 2011, 435(3): 641- 658.
doi: 10.1016/j.laa.2010.09.020
|
19 |
谢德燕. 基于图学习的多视图聚类[D]. 西安电子科技大学, 2019.
|
|
XIE D Y. Multi-view clustering via graph learning[D]. Xi'an: Xidian University, 2019. (in Chinese)
|
20 |
XIE Y, TAO D C, ZHANG W S, et al. On unifying multi-view self-representations for clustering by tensor multi-rank minimization. International Journal of Computer Vision, 2018, 126(11): 1157- 1179.
doi: 10.1007/s11263-018-1086-2
|
21 |
YANG J F, YIN W T, ZHANG Y, et al. A fast algorithm for edge-preserving variational multichannel image restoration. SIAM Journal on Imaging Sciences, 2009, 2(2): 569- 592.
doi: 10.1137/080730421
|
22 |
NIE F P, CAI G H, LI X L. Multi-view clustering and semi-supervised classification with adaptive neighbours[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 2408-2414.
|
23 |
CHEN Y Y, XIAO X L, PENG C, et al. Low-rank tensor graph learning for multi-view subspace clustering. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 92- 104.
doi: 10.1109/TCSVT.2021.3055625
|
24 |
CHEN Y Y, XIAO X L, HUA Z Y, et al. Adaptive transition probability matrix learning for multiview spectral clustering. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4712- 4726.
doi: 10.1109/TNNLS.2021.3059874
|
25 |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(11): 2579- 2605.
|