作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

2022年, 第48卷, 第2期 刊出日期:2022-02-15
  

  • 全选
    |
    封面和目录
  • 计算机工程. 2022, 48(2): 0-0.
    摘要 ( ) PDF全文 ( )   可视化   收藏
  • 热点与综述
  • 李金玉, 陈晓雷, 张爱华, 李策, 林冬梅
    计算机工程. 2022, 48(2): 1-9. https://doi.org/10.19678/j.issn.1000-3428.0061338
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    垃圾分类是保护生态环境、促进经济发展的有效措施,利用深度学习进行垃圾分类已成为当前学术界和工业界的研究热点。传统垃圾分类主要由人工进行分拣和分类,存在劳动强度大、分选效率低、工作环境差等缺点,急需智能化、自动化的分类方法来替代。近年来研究人员已经开始初步探索利用深度学习技术进行垃圾分类并提出一些有效的方法。从方法、数据集和研究方向等方面分析深度学习垃圾分类方法的研究现状,介绍不同深度学习模型在垃圾分类中的应用和发展,研究基于ResNet方法、基于DenseNet方法、基于单阶段目标检测方法和基于卷积神经网络与迁移学习相结合方法等多种典型方法的性能和特点并对比其优缺点,对现有的垃圾分类公开数据集进行概述与总结。在此基础上,分析深度学习在垃圾分类领域面临的挑战,并对其发展趋势及未来的研究方向进行展望。
  • 崔景洋, 陈振国, 田立勤, 张光华
    计算机工程. 2022, 48(2): 10-24. https://doi.org/10.19678/j.issn.1000-3428.0062623
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    随着网络安全技术的更新迭代,新型攻击手段日益增加,企业面临未知威胁难以识别的问题。用户与实体行为分析是识别用户和实体行为中潜在威胁事件的一种异常检测技术,广泛应用于企业内部威胁分析和外部入侵检测等任务。基于机器学习方法对用户和实体的行为进行模型建立与风险点识别,可以有效解决未知威胁难以检测的问题,增强企业网络安全防护能力。回顾用户与实体行为分析的发展历程,重点讨论用户与实体行为分析技术在统计学习、深度学习、强化学习等3个方面的应用情况,研究具有代表性的用户与实体行为分析算法并对算法性能进行对比分析。介绍4种常用的公共数据集及特征工程方法,总结两种增强行为表述准确性的特征处理方式。在此基础上,阐述归纳典型异常检测算法的优劣势,指出内部威胁分析与外部入侵检测的局限性,并对用户与实体行为分析技术未来的发展方向进行展望。
  • 彭红艳, 李杰, 石贞奎, 李先贤
    计算机工程. 2022, 48(2): 25-33,39. https://doi.org/10.19678/j.issn.1000-3428.0061419
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    由于难以构造通用的认证结构对图像类型数据的相似度计算过程进行验证,因此对加密图像检索结果的验证面临很大挑战。同时,现有多数加密图像检索方案没有考虑恶意云服务器的问题,可能返回不正确或不完整的检索结果。利用区块链技术的去中心化、不可篡改等特性,提出一种基于区块链可验证的加密图像检索方案BVEIR,确保搜索结果的可靠性与搜索过程的透明性。将加密索引存储在区块链(以太坊)上,通过区块链的共识机制保证在智能合约上完成搜索的功能,确保搜索结果完备性,同时将相应的加密图像数据外包到云服务器以降低存储成本,并在相似图片索引过程中使用基于视觉词袋模型和simhash的双层索引结构,进一步提高检索效率和精度。实验结果表明,BVEIR具有良好的隐私保护效果,其建立索引时间较SEIR方案更少,并且可实现对图像数据的细粒度访问控制,在提高索引效率的同时保证图像检索的精确率。
  • 施荣华, 金鑫, 胡超
    计算机工程. 2022, 48(2): 34-39. https://doi.org/10.19678/j.issn.1000-3428.0060517
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    方面级别文本情感分析旨在分析文本中不同方面所对应的情感趋向。传统基于神经网络的深度学习模型在文本情感分析的过程中,大多直接使用注意力机制而忽略了句法关系的重要性,即不能充分利用方面节点的上下文语义信息,导致情感趋向预测效果不佳。针对该问题,设计一种融合句法信息的图注意力神经网络模型,并将其应用于文本情感分析任务。利用预训练模型BERT进行词嵌入得到初始词向量,将初始词向量输入双向门控循环神经网络以增强特征向量与上下文信息之间的融合,防止重要上下文语义信息丢失。通过融合句法信息的图注意力网络加强不同方面节点之间的交互,从而提升模型的特征学习能力。在SemEval-2014数据集上的实验结果表明,该模型能够充分利用句法信息进行情感分析,其准确率较LSTM及其变种模型至少提升3%,对Restaurant评论进行情感分类预测时准确率高达83.3%。
  • 陈恒, 王思懿, 李冠宇, 祁瑞华, 杨晨, 王维美
    计算机工程. 2022, 48(2): 40-46,64. https://doi.org/10.19678/j.issn.1000-3428.0060139
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    知识图谱采用RDF三元组的形式描述现实世界中的关系和头、尾实体,即(头实体,关系,尾实体)或(主语,谓语,宾语)。为补全知识图谱中缺失的事实三元组,将四元数融入胶囊神经网络模型预测缺失的知识,并构建一种新的知识图谱补全模型。采用超复数嵌入取代传统的实值嵌入来编码三元组结构信息,以尽可能全面捕获三元组全局特性,将实体、关系的四元数嵌入作为胶囊网络的输入,四元数结合优化的胶囊网络模型可以有效补全知识图谱中丢失的三元组,提高预测精度。链接预测实验结果表明,与CapsE模型相比,在数据集WN18RR中,该知识图谱补全模型的Hit@10与正确实体的倒数平均排名分别提高3.2个百分点和5.5%,在数据集FB15K-237中,Hit@10与正确实体的倒数平均排名分别提高2.5个百分点和4.4%,能够有效预测知识图谱中缺失的事实三元组。
  • 人工智能与模式识别
  • 张鹏举, 贾永辉, 陈文亮
    计算机工程. 2022, 48(2): 47-54. https://doi.org/10.19678/j.issn.1000-3428.0060438
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    问答系统应用于人工智能、自然语言处理和信息检索领域获得了较好的效果,知识图谱问答(KBQA)作为其中的重要组成部分,是一项极具挑战性的自然语言处理任务。然而,目前常见的中文KBQA系统对于实体链接的实体消歧部分并没有给出很好的解决方法。提出一种基于多特征实体消歧的中文KBQA系统,通过结合实体自身的知名度特征、问句与实体关系的语义相似度特征、问句与实体的字符相似度特征和语义相似度特征,构建多特征实体消歧模型,提高实体链接准确率,为系统的问句分类和最优路径选取部分提供更准确的主题实体,从而提升系统性能。实验结果表明,该系统在CCKS2019-CKBQA评测数据的验证集上平均F1值为72.08%,其中采用多特征消歧模型的实体链接准确率达到90.84%,较使用知名度消歧模型和评测大赛第1名分别提升6.35和0.11个百分点。
  • 高峰, 姚光涛, 顾进广
    计算机工程. 2022, 48(2): 55-64. https://doi.org/10.19678/j.issn.1000-3428.0060350
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    将语义数据流处理引擎与知识图谱嵌入表示学习相结合,可以有效提高实时数据流推理查询性能,但是现有的知识表示学习模型更多关注静态知识图谱嵌入,忽略了知识图谱的动态特性,导致难以应用于实时动态语义数据流推理任务。为了使知识表示学习模型适应知识图谱的在线更新并能够应用于语义数据流引擎,建立一种基于改进多嵌入空间的动态知识图谱嵌入模型PUKALE。针对传递闭包等复杂推理场景,提出3种嵌入空间生成算法。为了在进行增量更新时更合理地选择嵌入空间,设计2种嵌入空间选择算法。基于上述算法实现PUKALE模型,并将其嵌入数据流推理引擎CSPARQL-engine中,以实现实时语义数据流推理查询。实验结果表明,与传统的CSPARQL和KALE推理相比,PUKALE模型的推理查询时间分别约降低85%和93%,其在支持动态图谱嵌入的同时能够提升实时语义数据流推理准确率。
  • 田盼盼, 陈璟
    计算机工程. 2022, 48(2): 65-71,78. https://doi.org/10.19678/j.issn.1000-3428.0060360
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    生物网络比对是研究生物进化过程的重要手段,不同物种间的比对不仅有助于理解物种的知识转移,同时也有助于进行功能预测和检测保守功能成分。然而,现有比对算法很难实现拓扑度量和生物度量同时最优。设计JAlign算法,将拓扑相似性与归一化序列相似性相结合构成目标函数,基于种子-扩展算法和模块检测进行全局比对。在种子筛选阶段,利用Jerarca聚类算法划分功能模块,借助目标函数计算模块间的相似性进行最优模块匹配,并从匹配结果中提取部分节点对作为种子节点。在扩展阶段,将比对从种子节点扩展至其邻居节点,在选择节点对进行扩展比对时综合考虑节点之间的连接关系、度差值、节点相似性等因素。在此基础上,为避免遗漏分散节点,找到剩余未匹配的节点构建二分图,以贪心方式进行最大加权二分图匹配,并将匹配结果合并到比对集合中,完成最终匹配。实验结果表明,JAlign算法能够实现拓扑度量和生物度量的良好平衡,其边正确性指标、诱导保守子结构得分、对称子结构得分和生物质量使用功能一致性指标均优于L-GRAAL、SPINAL和ModuleAlign算法,在时间效率上也具有优势。
  • 吴鹏翔, 李凡长
    计算机工程. 2022, 48(2): 72-78. https://doi.org/10.19678/j.issn.1000-3428.0060046
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    传统机器学习方法泛化性能不佳,需要通过大规模数据训练才能得到较好的拟合结果,因此不能快速学习训练集外的少量数据,对新种类任务适应性较差,而元学习可实现拥有类似人类学习能力的强人工智能,能够快速适应新的数据集,弥补机器学习的不足。针对传统机器学习中的自适应问题,利用样本图片的局部旋转对称性和镜像对称性,提出一种基于群等变卷积神经网络(G-CNN)的度量元学习算法,以提高特征提取能力。利用G-CNN构建4层特征映射网络,根据样本图片中的局部对称信息,将支持集样本映射到合适的度量空间,并以每类样本在度量空间中的特征平均值作为原型点。同时,通过同样的映射网络将查询机映射到度量空间,根据查询集中样本到原型点的距离完成分类。在Omniglot和miniImageNet数据集上的实验结果表明,该算法相比孪生网络、关系网络、MAML等传统4层元学习算法,在平均识别准确率和模型复杂度方面均具有优势。
  • 王璐, 刘晓清, 何震瀛
    计算机工程. 2022, 48(2): 79-85,91. https://doi.org/10.19678/j.issn.1000-3428.0060269
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    查询文本中频繁出现的短语可快速掌握文本内容,然而传统频繁词序列挖掘算法面向挖掘任务时的时间复杂度较高,无法满足频繁更换查询条件及快速获得反馈的查询需求。利用基于频率树的快速频繁词序列挖掘算法(TS_Mining),在保持后缀树线性构造时间的情况下实现文本集合中频繁词序列的查询,并采用树型索引结构避免多次扫描文本集合,降低算法时间复杂度。针对连续时间区间内的频繁词序列查询问题,提出改进的剪枝挖掘算法(TS_Pruning),通过减少频率树的扫描范围进一步提高挖掘效率。实验结果表明,TS_Mining与TS_Pruning算法的运行时间相比经典Apriori挖掘算法约减少了2个数量级,具有更高的频繁词序列挖掘效率。
  • 曹中潇, 冯仰德, 王珏, 闵维潇, 姚铁锤, 高岳, 王丽华, 高付海
    计算机工程. 2022, 48(2): 86-91. https://doi.org/10.19678/j.issn.1000-3428.0060481
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    稀疏矩阵向量乘(SpMV)是求解稀疏线性方程组的计算核心,被广泛应用在经济学模型、信号处理等科学计算和工程应用中,对于SpMV及其调优技术的研究有助于提升解决相关领域问题的运算效率。传统SpMV自动调优方法基于硬件平台的体系结构参数设置来提升SpMV性能,但巨大的参数设置量导致搜索空间变大且自动调优耗时大幅增加。采用深度学习技术,基于卷积神经网络,构建由双通道稀疏矩阵特征融合以及稀疏矩阵特征与体系结构特征融合组成的SpMV运算性能预测模型,实现快速自动调优。为提高SpMV运算时间的预测精度,选取特征数据并利用箱形图统计SpMV时间信息,同时在佛罗里达稀疏矩阵数据集上进行实验设计与验证,结果表明,该模型的SpMV运算时间预测准确率达到80%以上,并且具有较强的泛化能力。
  • 刘鹏, 叶润, 闫斌, 谢茜, 刘睿
    计算机工程. 2022, 48(2): 92-98,105. https://doi.org/10.19678/j.issn.1000-3428.0060532
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    深度回声状态网络是回声状态网络与深度学习思想的结合,合理选取不同谱半径的内部状态矩阵和弱积分参数能有效增强深度回声状态网络的多尺度时域特性。利用数据可视化分析输出矩阵在不同网络层中的分布关系,发现高层网络中部分神经元处于饱和工作状态且该状态抑制了网络动态预测能力。提出一种深度回声状态网络的输入矩阵自适应算法,在对网络内部状态的均值和方差进行递推估计的基础上判断神经元饱和状态,通过自适应调整各层输入权重的值来增强神经元动态性。数值计算结果表明,基于输入尺度自适应算法的深度回声状态网络相对同等规模的单层回声状态网络对于动态系统的预测精度有成倍提升。
  • 郭奉琦, 孟凡荣, 王志晓
    计算机工程. 2022, 48(2): 99-105. https://doi.org/10.19678/j.issn.1000-3428.0060194
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    针对当前谣言检测任务中社交媒体推特平台的推文数据分布复杂且不均衡的特点,提出基于变分自编码器(VAE)的谣言立场分类算法VAE-LSTM。对数据进行预处理后,利用word2vec模型提取推文词向量并输入VAE中进行训练,得到符合简单概率分布的深度特征序列再从中采样获取有效特征,以避免数据量较大的推文类别影响特征向量。在此基础上,使用长短时记忆(LSTM)网络处理向量序列数据进而实现分类。理论分析和实验结果表明,VAE-LSTM算法无须手动提取或添加特征,训练过程简单高效,同时能缓解类间不平衡问题,其应用于实际场景准确率和F1得分分别为0.800和0.494,与时序注意力机制算法、Turing算法、霍克斯过程算法等相比分类性能更好,且较SVM等早期机器学习方法节省了大量数据预处理时间。
  • 周瑞朋, 秦进
    计算机工程. 2022, 48(2): 106-112. https://doi.org/10.19678/j.issn.1000-3428.0060193
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    现有强化学习探索策略存在过度探索的问题,导致智能体收敛速度减慢。通过设计一个基于奖励排序的存储表(M表)和ε-greedy改进算法,提出基于最佳子策略记忆的强化探索策略。将奖励值大于零的样本以子策略的形式存入M表,使其基于奖励降序排序,在整个训练过程中,使用与表中相似且奖励值较高的样本以子策略形式替换表中子策略,从而在表中形成一个能有效产生目前最优奖励的动作集合,提高探索的针对性,而不是随机探索。同时,在ε-greedy算法基础上按一定的概率分配,使智能体通过使用M表探索得到MEG探索策略。基于此,智能体在一定概率下将当前状态与M表中子策略匹配,若相似,则将表中与其相似的子策略对应动作反馈给智能体,智能体执行该动作。实验结果表明,该策略能够有效缓解过度探索现象,与DQN系列算法和非DQN系列的A2C算法相比,其在Playing Atari 2600游戏的控制问题中获得了更高的平均奖励值。
  • 汪正凯, 沈东升, 王晨曦
    计算机工程. 2022, 48(2): 113-124. https://doi.org/10.19678/j.issn.1000-3428.0060594
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    Fisher Score (FS)是一种快速高效的评价特征分类能力的指标,但传统的FS指标既无法直接应用于多标记学习,也不能有效处理样本极值导致的类中心与实际类中心的误差。提出一种结合中心偏移和多标记集合关联性的FS多标记特征选择算法,找出不同标记下每类样本的极值点,以极值点到该类样本的中心距离乘以半径系数筛选新的样本,从而获得分布更为密集的样本集合,以此计算特征的FS得分,通过整体遍历全体样本的标记集合中的每个标记,并在遍历过程中针对具有更多标记数量的样本自适应地赋以标记权值,得到整体特征的平均FS得分,以特征的FS得分进行排序过滤出目标子集实现特征选择目标。在8个公开的多标记文本数据集上进行参数分析及5种指标性能比较,结果表明,该算法具有一定的有效性和鲁棒性,在多数指标上优于MLNB、MLRF、PMU、MLACO等多标记特征选择算法。
  • 于尊瑞, 毛震东, 王泉, 张勇东
    计算机工程. 2022, 48(2): 125-131. https://doi.org/10.19678/j.issn.1000-3428.0060501
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    问题生成任务是指根据给定的文本段落和答案来自动生成对应的问题。针对现有问题生成方法存在的误差累积现象以及问题生成任务固有的“一对多”情况,提出一种带有关键词感知功能的问题生成方法。在预训练语言模型的基础上,实现关键词分类模型与问题生成模型的网络结构设计。输入文本段落中蕴含关键词,为使所生成的问题中包含同样的关键词以保证问题与段落的语义一致性,利用关键词分类模型提取出文本段落中的关键词,将关键词与非关键词的区分特征融入问题生成模型的输入中,该特征作为问题生成过程的全局信息,用以消除问题生成模型仅依赖局部最优解的弊端,减少误差累积与“一对多”情况的发生。在SQuAD数据集上的实验结果表明,该方法能够提升问题生成的质量,其BLEU-4指标值可达24,优于带有复制机制、带有语义监督的问题生成模型,目前已经借助百度百科数据平台实现了大规模工业应用。
  • 网络空间安全
  • 李闽, 张倩颖, 王国辉, 施智平, 关永
    计算机工程. 2022, 48(2): 132-139. https://doi.org/10.19678/j.issn.1000-3428.0060881
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    为保护文件系统的安全性,提出一种抗板级物理攻击的持久存储方法。利用ARM TrustZone技术构建持久存储架构,实现内存保护机制和持久存储保护服务,提高文件系统的物理安全性。基于片上内存(OCM)在可信执行环境(TEE)中的内核层建立内存保护机制,保证TEE的可信应用能够抵抗板级物理攻击。基于TEE的内存保护机制实现保护文件系统中敏感数据的持久存储保护服务,确保文件系统的机密性和完整性。在物理开发板上实现持久存储架构的原型系统,使用基准测试工具对原型系统进行性能评估,并分析性能损耗的原因。测试结果表明,内存保护机制在保护TEE系统物理安全性时引入的时间开销会随着OCM的增大而减小,持久存储保护服务在保护数据量较小的敏感数据时产生的时间开销在用户可接受范围内。
  • 杨珂, 张帆, 郭威, 赵博, 穆清
    计算机工程. 2022, 48(2): 140-146,155. https://doi.org/10.19678/j.issn.1000-3428.0061151
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    拟态存储作为网络空间拟态防御技术在分布式存储领域的工程实现,能够有效提高存储系统的安全性。由于元数据节点中存在随机性的算法和逻辑,使得执行体状态可能不一致,从而导致整个拟态存储系统无法正常运转。为解决该问题,提出一种元数据再同步方法。在系统中引入状态监视模块和映射同步机制,状态监视模块及时检测执行体状态不一致的情况并进行反馈,映射同步机制建立客户端指令和裁决器输出结果之间的映射关系,使得同步过程在不影响拟态存储系统正常工作的同时符合分布式存储系统最终的一致性要求。在拟态存储工程样机上进行功能和性能测试,结果表明,该方法能够以较小的性能开销来有效解决元数据执行体状态不一致的问题,提升拟态存储系统的稳定性,重复执行再同步机制可使同步成功率达到100%。
  • 杨洋, 胡晓辉, 杜永文
    计算机工程. 2022, 48(2): 147-155. https://doi.org/10.19678/j.issn.1000-3428.0060417
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    基于历史查询概率的哑元位置隐私保护机制存在匿名度低、隐匿区域小和位置分布不均匀的问题。提出K-匿名哑元位置选取(K-DLS)算法用于位置隐私保护。通过综合考虑匿名集的位置离散度和零查询用户,增强哑元匿名集的隐私性。利用熵度量选择哑元位置,使得哑元匿名集的熵值最优,并根据位置偏移距离优化匿名结果,增加匿名集的位置离散度。仿真结果表明,K-DLS算法的哑元匿名集离散度优于DLS、DLP、Enhanced_DLP等算法,能够有效提高用户位置的隐私保护效果。
  • 连宜新, 陈韬, 李伟, 南龙梅
    计算机工程. 2022, 48(2): 156-163,172. https://doi.org/10.19678/j.issn.1000-3428.0060722
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    为解决对称密码中s盒和非线性布尔函数(NBF)在实现密码专用处理器时采用异构化设计导致的资源浪费问题,提出一种类AESs盒和NBF的可重构电路结构方法。分析s盒问题中的原有非线性布尔函数模块(NBFM),4-4、6-4的s盒电路能够提供更好的适配性,但不能很好地支持8-8的s盒电路。基于塔域分解理论,论证不同的类AESs盒电路差异在于输入前后的转换矩阵。采用混合基的方法将类AESs盒电路分解成GF (16)上的各个运算模块,并推导出模块比特级别表达式,在具体适配运算模块时采取门级实现、NBFM适配实现或对NBFM进行改进3种方案,实现类AESs盒和NBF的可重构电路。实验结果表明,该方法在不影响原有NBF功能的基础上,利用4个NBFM与22.7%的s盒电路面积即可实现一个完整的类AESs盒电路。
  • 徐鑫, 温蜜
    计算机工程. 2022, 48(2): 164-172. https://doi.org/10.19678/j.issn.1000-3428.0060205
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    动态频谱共享能够解决由于互联无线设备快速增长导致的频谱资源短缺问题,但用户需要向数据库提交位置信息来查询频谱的可用性,造成用户的隐私泄露,而多数位置信息保护方案较少同时考虑对主要用户(PU)和二级用户(SU)的位置隐私保护。提出一种基于盲签名和秘密共享的数据库驱动认知无线电网络隐私保护方案。通过对PU和SU的双重隐私保护,使用盲签名和匿名来确保匿名验证用户身份,同时运用秘密共享避免泄露用户信息。仿真结果表明,与PeDSS和LP-Goldberg等方案相比,该方案具有较好的评估性能和更高的安全性,能够更好地应用于移动环境中。
  • 图形图像处理
  • 汪常建, 丁勇, 卢盼成
    计算机工程. 2022, 48(2): 173-179. https://doi.org/10.19678/j.issn.1000-3428.0059979
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    在无人机场景下,目标检测存在样本数量不足、成像视角不同的问题,导致检测精度低。提出一种结合改进特征金字塔网络(FPN)与关联网络的Faster R-CNN目标检测算法。通过在传统FPN结构中以自下而上的特征融合方式提取特征图的语义信息和位置信息,最大程度地保留特征图的多尺度信息。同时利用候选区域之间的形状特征和位置特征构造区域之间的关联特征,并与深度特征相融合进行分类回归,从而充分提取特征图的整体信息,实现目标检测。在PASCAL VOC 2007和NWPU VHR-10数据集上的实验结果表明,相比FPN+Faster R-CNN算法,该算法的交并比和平均检测精度分别提高了10和2.7个百分点,具有较优的目标检测性能。
  • 武茜, 贾世杰
    计算机工程. 2022, 48(2): 180-185,193. https://doi.org/10.19678/j.issn.1000-3428.0060739
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    基于深度学习的人脸替换技术取得快速发展,但由DeepFake自动生成的人脸替换图片有可能危害人们的隐私安全。针对DeepFake图片鉴别问题,建立一种基于多通道注意力机制的深度学习鉴别网络模型。将Xception网络作为基础特征提取器,在多通道注意力模块中通过矩阵相乘的思想融合全局和局部的注意力表示,以减少重要信息损失。设计损失函数时添加中心损失,从而提高特征区分度。在训练过程中利用注意力图来引导训练图像的裁剪和去除,以达到数据增强的目的。实验结果表明,相比Xception、B4Att方法,在FaceForensics++数据集上该网络模型对DeepFake的检测精度分别提高0.77和0.45个百分点,在Celeb-DF数据集上分别提高5.30和4.68个百分点。
  • 张锡英, 王厚博, 边继龙
    计算机工程. 2022, 48(2): 186-193. https://doi.org/10.19678/j.issn.1000-3428.0062144
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    立体匹配网络中的特征提取是提高双目视觉立体匹配精确度的关键步骤。为充分提取图像特征信息,结合密集空洞卷积、空间金字塔池化和堆叠沙漏的特点,构建一种多成本融合的立体匹配网络DCNet。引入密集空洞卷积和空间金字塔池化方法提取多尺度特征信息,同时使用轻量化注意力模块优化多尺度特征信息,构建多特征融合的匹配代价卷。在此基础上,利用3D卷积神经网络和堆叠沙漏网络聚合匹配代价信息,并通过回归的方式生成视差图。实验结果表明,该网络在KITTI2015数据集上的误匹配率为2.12%,相比PSMNet、DisNetC、PDSNet等网络,在特征提取部分能够获得更丰富的特征信息,且提升特征匹配的效果。
  • 李柯, 李邵梅, 吉立新, 刘硕
    计算机工程. 2022, 48(2): 194-200,206. https://doi.org/10.19678/j.issn.1000-3428.0060267
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    当前以换脸为代表的伪造视频泛滥,给国家、社会和个人带来潜在威胁,有效检测该类视频对保护个人隐私和维护国家安全具有重要意义。为提高视频伪造人脸检测效果,基于可解释性好的胶囊网络,以Capsule-Forensics检测算法为基础,提出一种结合自注意力胶囊网络的伪造人脸检测方法。使用部分Xception网络作为特征提取部分,降低模型的参数量,在主体部分引入带注意力机制的胶囊结构,使模型聚焦人脸区域,将综合多维度的Focal Loss作为损失函数,提高模型对难分样例的检测效果。实验结果表明,与Capsule-Forensics算法相比,该方法能够减少模型参数量和计算量,在多种伪造类型数据集上均具有较高的准确率。
  • 周东明, 张灿龙, 唐艳平, 李志欣
    计算机工程. 2022, 48(2): 201-206. https://doi.org/10.19678/j.issn.1000-3428.0060416
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    受行人姿态变化、光照视角、背景变换等因素的影响,现有行人再识别模型通常对数据集中的行人分成若干块提取图像的局部特征进行辨识以提高识别精度,但存在人体局部特征不匹配、容易丢失非人体部件的上下文线索等问题。构建一种改进的行人再识别模型,通过将人体语义解析网络的局部特征进行对齐,增强行人语义分割模型对图像中行人任意轮廓的建模能力,利用局部注意力网络捕捉非人体部分丢失的语境线索。实验结果表明,该模型在Market-1501、DukeMTMC和CUHK03数据集上的平均精度均值分别达到83.5%、80.8%和92.4%,在DukeMTMC数据集上的Rank-1为90.2%,相比基于注意力机制、行人语义解析和局部对齐网络的行人再识别模型具有更强的鲁棒性和迁移性。
  • 王宽, 杨环, 潘振宽, 司建伟
    计算机工程. 2022, 48(2): 207-214,223. https://doi.org/10.19678/j.issn.1000-3428.0060191
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    在立体图像质量评价领域,有效地模拟人类视觉系统对图像质量进行评价具有重要意义,考虑到人眼的视觉感知特性,基于单目和双目视觉信息构建一种立体图像质量评价模型MB-FR-SIQA。采用基于结构相似性的立体视差算法得到参考和失真立体图像的视差矩阵,结合Gabor能量响应图、显著性图和视差矩阵生成中间视图,并优化左右眼加权系数计算方法,以提高生成中间视图的准确性。分别利用单目图像和中间视图提取单目和双目视觉信息,计算单目质量分数和双目质量分数,并融合得到立体图像的质量分数,达到评价立体图像质量的目的。实验结果表明,MB-FR-SIQA模型在LIVE-I数据库上具有较高的预测精度,其斯皮尔曼等级相关系数、皮尔森线性相关系数、均方根误差分别为0.945、0.951、5.318,且预测的质量分数符合人类主观评估。
  • 宋佳, 陈程立诏
    计算机工程. 2022, 48(2): 215-223. https://doi.org/10.19678/j.issn.1000-3428.0060268
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    现有的视频显著性检测算法通常采用双流结构提取视频的时空线索,其中运动信息作为双流结构的一个分支,在显著物体发生剧烈或慢速移动时存在运动估计准确率低的问题,并且不合理的训练数据或方案使得权重偏向单个分支结构。提出一种基于多流网络一致性的视频显著性检测算法MSNC。设计并使用一种新的三重网络结构提取预选目标区域的颜色信息、时序信息和先验特征,通过先验特征补偿运动流的缺陷,并提高运动线索的利用率。采用多流一致性融合模型优化三流分支,得到不同特征的最佳融合方案。同时通过循环训练策略平衡三重网络的权重,以避免网络过度拟合单流分支,从而有效地提高运动估计和定位的准确率。在Davis数据集上的实验结果表明,相比PCSA、SSAV、MGA等算法,该算法的鲁棒性更优,其maxF和S-Measure值分别达到0.893和0.912,MAE仅为0.021。
  • 吴旭, 刘翔, 赵静文
    计算机工程. 2022, 48(2): 224-229,236. https://doi.org/10.19678/j.issn.1000-3428.0060066
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    现有ManTra-Net、DWT-CNN等基于深度学习的数字图像篡改检测算法存在计算复杂度高、检测准确度低等问题。为提取图像篡改与非篡改区域的差异性特征,提出一种基于MobileNetV3-LSTM混合模型的图像篡改检测算法。采用双分支网络架构,主分支网络为带有空洞卷积的轻量级CNN特征提取网络,副分支网络学习篡改图像边界上的差异性,在融合多尺度特征后进行端到端训练,最终输出预测定位图。在COVERAGE、CASIA2和COLUMBIA标准数据集上的实验结果表明,与Xavier-CNN、ELA等算法相比,该算法检测准确度平均提高9.2个百分点,参数量缩减82.3%,推理速度加快2倍,并且具有一定的泛化能力,适用于复制-粘贴、拼接等图像篡改操作的篡改区域检测定位任务。
  • 戴忠东, 任敏华
    计算机工程. 2022, 48(2): 230-236. https://doi.org/10.19678/j.issn.1000-3428.0059684
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    视线估计能够反映人的关注焦点,对理解人类的情感、兴趣等主观意识有重要作用。但目前用于视线估计的单目眼睛图像容易因头部姿态的变化而失真,导致视线估计的准确性下降。提出一种新型分类视线估计方法,利用三维人脸模型与单目相机的内在参数,通过人脸的眼睛与嘴巴中心的三维坐标形成头部姿态坐标系,从而合成相机坐标系与头部姿态坐标系,并建立归一化坐标系,实现相机坐标系的校正。复原并放大归一化得到的灰度眼部图像,建立基于表观的卷积神经网络模型分类方法以估计视线方向,并利用黄金分割法优化搜索,进一步降低误差。在MPIIGaze数据集上的实验结果表明,相比已公开的同类算法,该方法能降低约7.4%的平均角度误差。
  • 谭润, 叶武剑, 刘怡俊
    计算机工程. 2022, 48(2): 237-242,249. https://doi.org/10.19678/j.issn.1000-3428.0060111
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    细粒度图像分类旨在对属于同一基础类别的图像进行更细致的子类划分,其较大的类内差异和较小的类间差异使得提取局部关键特征成为关键所在。提出一种结合双语义数据增强与目标定位的细粒度图像分类算法。为充分提取具有区分度的局部关键特征,在训练阶段基于双线性注意力池化和卷积块注意模块构建注意力学习模块和信息增益模块,分别获取目标局部细节信息和目标重要轮廓这2类不同语义层次的数据,以双语义数据增强的方式提高模型准确率。同时,在测试阶段构建目标定位模块,使模型聚焦于分类目标整体,从而进一步提高分类准确率。实验结果表明,该算法在CUB-200-2011、FGVC Aircraft和Stanford Cars数据集中分别达到89.5%、93.6%和94.7%的分类准确率,较基准网络Inception-V3、双线性注意力池化特征聚合方式以及B-CNN、RA-CNN、MA-CNN等算法具有更好的分类性能。
  • 陈学磊, 张品, 权令伟, 易超, 鹿存跃
    计算机工程. 2022, 48(2): 243-249. https://doi.org/10.19678/j.issn.1000-3428.0060653
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    水下机器人的视觉感知功能因受到水下环境因素的影响,面临着图像质量降低的挑战,如图像颜色畸变、整体色调偏绿、偏蓝、对比度较低、细节较为模糊等。提出一种结合深度学习方法与物理成像模型的新型水下图像增强算法,通过构建包含扩张卷积和带参数激活函数的神经网络,进行背景散射光和直接传输映射的估计,并结合成像模型的数学表达进行重建运算得到增强后图像。实验结果表明,与UDCP、IBLA、GLNet等典型图像增强算法相比,该算法具有更快的运算速度,且能够消除水下环境因素带来的影响,丰富图像色彩的同时能增强各类细节,在峰值信噪比指标和结构相似度指标上取得了较大值。此外,增强后的图像在特征点匹配实验中获得了更好的匹配效果。
  • 邹品荣, 肖锋, 张文娟, 张万玉, 王晨阳
    计算机工程. 2022, 48(2): 250-260. https://doi.org/10.19678/j.issn.1000-3428.0061159
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    视觉问答(VQA)是计算机视觉和自然语言处理领域中典型的多模态问题,然而传统VQA模型忽略了双模态中语义信息的动态关系和不同区域间丰富的空间结构。提出一种新的多模块协同注意力模型,对视觉场景中对象间关系的动态交互和文本上下文表示进行充分理解,根据图注意力机制建模不同类型对象间关系,学习问题的自适应关系表示,将问题特征和带关系属性的视觉关系通过协同注意编码,加强问题词与对应图像区域间的依赖性,通过注意力增强模块提升模型的拟合能力。在开放数据集VQA 2.0和VQA-CP v2上的实验结果表明,该模型在“总体”、“是/否”、“计数”和“其他”类别问题上的精确度明显优于DA-NTN、ReGAT和ODA-GCN等对比方法,可有效提升视觉问答的准确率。
  • 楼鑫杰, 李小薪, 刘志勇
    计算机工程. 2022, 48(2): 261-267. https://doi.org/10.19678/j.issn.1000-3428.0059901
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    现有的图像超分辨率重建方法充分利用了强大的深度学习模型,但忽略了人类视觉系统中普遍存在的反馈机制。提出一种新型图像超分辨率重建算法,通过具有约束条件的递归神经网络中包含的隐藏状态实现反馈机制,旨在处理网络间的反馈连接并生成更具说服力的高级表示形式,提供更多的上下文信息,从而帮助低分辨率图像完成高分辨率图像的重建。此外,具有较强早期图像重建能力的反馈网络可逐步生成最终的高分辨率图像。为解决低分辨率图像因多种类型的退化而导致的细节损失问题,引入课程学习策略,使网络适用于更复杂的任务,提升模型的鲁棒性。实验结果表明,该算法能有效提升图像超分辨率重建的准确性,与SRCNN、VDSR、RDN等算法相比,其PSNR值最高提升了7.15 dB。
  • 开发研究与工程应用
  • 王文欣, 贺煜航, 陈刚
    计算机工程. 2022, 48(2): 268-274. https://doi.org/10.19678/j.issn.1000-3428.0060000
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    传统的医学图像分割网络存在分割精度低、图像信息易丢失、分割轮廓不清晰等问题。为提高医学图像分割准确率,提出一种结合胶囊网络与U-Net的多标签图像分割网络UCaps。以U-Net网络为架构,基于胶囊网络原理设计适用于胶囊网络的上采样算法,通过结合高斯混合模型作为聚类算法的EM路由算法聚合底层特征对高层特征的推导过程,使高层特征包含底层特征信息,同时底层特征间的位置、姿态等信息具有统一性。实验结果表明,相比U-Net、SegCaps、MaVec-Caps网络,UCaps网络的平均分割准确率为93.21%,其中左肺分割准确率达到98.24%,具有较高的图像分割准确率和较快的收敛速度。
  • 宋勇春, 王茜竹, 高正念
    计算机工程. 2022, 48(2): 275-280,290. https://doi.org/10.19678/j.issn.1000-3428.0060148
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    针对无线系统带宽资源有限、基站负载压力大、传输时延长等问题,提出一种基于非正交多址接入技术的D2D系统吞吐量最大化资源分配算法。在不同用户的服务质量约束条件下,建立D2D系统吞吐量最大化资源分配模型。该模型的优化目标是一个混合整数非线性规划问题,将其解耦为信道匹配与功率分配2个子问题并分别进行处理,利用自适应惩罚函数法处理约束条件并提出一种基于爬山策略的自适应遗传算法以对问题进行求解。仿真结果表明,与GA、AGA算法相比,该算法能够有效提高D2D系统的吞吐量,且收敛性能更好。
  • 乔栋, 陈章进, 邓良, 屠程力
    计算机工程. 2022, 48(2): 281-290. https://doi.org/10.19678/j.issn.1000-3428.0060270
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    语音情感识别在人机交互中具有重要意义。为解决中文语音情感识别效率和准确率低等问题,提出一种基于Trumpet-6卷积神经网络模型的中文语音情感识别方法。在MFCC特征提取过程中,通过增加分帧加窗操作时采样点的个数,增添每个汉明窗内的特征及减少汉明窗个数,从而缩小MFCC特征图的像素尺寸,提高单次识别的处理效率。在此基础上,使用高斯白噪声对数据集进行数据增强处理,缓解训练过程中的过拟合问题。在CASIA语音情感数据集上的实验结果表明,该方法的测试准确率达95.7%,优于Lenet-5、RNN、LSTM等传统方法,且Trumpet-6卷积神经网络模型采用2 048个采样点,仅需176 550个待训练参数,与采用DCNN的ResNet34和循环神经网络模型相比,参数更少,结构更简单,处理速度更快。
  • 李晓, 卢先领
    计算机工程. 2022, 48(2): 291-296,305. https://doi.org/10.19678/j.issn.1000-3428.0060145
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    电力负荷预测对电力系统的部署、规划和运行影响重大,但目前各输入特征对电网负荷情况影响的程度不稳定,且递归神经网络捕获负荷数据的长期记忆能力差,导致预测精度下降。提出一种基于双重注意力机制和GRU网络的预测新模型,利用特征注意力机制自主分析历史信息与输入特征间的关联关系,提取重要特征,并通过时序注意力机制自主选取GRU网络中关键时间点的历史信息,提升较长时间段预测效果的稳定性。在3个公开数据集上的实验结果表明,该模型在预测精度指标上表现良好,对比SVR、KPCA-ELM、DBN、GRU、Attention-GRU、CNN-LSTM、Attention-CNN-GRU模型预测精度分别提高了2.47、1.14、1.93、1.37、1.04、0.74、0.41个百分点。
  • 陈冬梅, 卜霄菲, 黄河, 杜扬, 高国举, 孙玉娥
    计算机工程. 2022, 48(2): 297-305. https://doi.org/10.19678/j.issn.1000-3428.0060727
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    为空闲出租车司机推荐有效的闲逛路线在提高出租车司机工作效率、减少乘客等待时间以及缓解交通压力方面具有重要作用。现有的研究工作主要集中于为空闲司机推荐完整的驾驶路线,没有考虑到真实路网环境下某些路段的可等待因素,使得推荐的路线因载客概率较低、行驶距离较长而花费成本较高。提出一种基于候客点规划的路线推荐算法,对出租车轨迹数据进行处理,并设计路径匹配算法将每个轨迹点与真实路段一一匹配。通过统计每个路段历史接载信息,并利用一种改进的多层感知机建立可预测时序接载概率的模型,结合路段的可等待因素设计一种最小花费成本的路线推荐算法。在真实数据集上的实验结果表明,与MNP、InExperence、Random算法相比,所提算法花费成本、巡航时间以及巡航路程均明显减少。
  • 崔丽平, 古丽拉·阿东别克, 王智悦
    计算机工程. 2022, 48(2): 306-313. https://doi.org/10.19678/j.issn.1000-3428.0060062
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    旅游领域命名实体识别是旅游知识图谱构建过程中的关键步骤,与通用领域的实体相比,旅游文本的实体具有长度长、一词多义、嵌套严重的特点,导致命名实体识别准确率低。提出一种融合词典信息的有向图神经网络(L-CGNN)模型,用于旅游领域中的命名实体识别。将预训练词向量通过卷积神经网络提取丰富的字特征,利用词典构造句子的有向图,以生成邻接矩阵并融合字词信息,通过将包含局部特征的词向量和邻接矩阵输入图神经网络(GNN)中,提取全局语义信息,并引入条件随机场(CRF)得到最优的标签序列。实验结果表明,相比Lattice LSTM、ID-CNN+CRF、CRF等模型,L-CGNN模型在旅游和简历数据集上具有较高的识别准确率,其F1值分别达到86.86%和95.02%。
  • 罗梦诗, 徐杨, 叶星鑫
    计算机工程. 2022, 48(2): 314-320. https://doi.org/10.19678/j.issn.1000-3428.0060493
    摘要 ( ) PDF全文 ( ) HTML ( )   可视化   收藏
    在人体姿态估计任务中,针对高分辨率网络提取和融合特征图的特征信息时不能有效获取多通道信息和空间特征信息,导致人体姿态估计结果不够精确。在高分辨率网络(HRNet)的基础上,提出一种融入双注意力的高分辨率人体姿态估计网络ENNet。通过引入通道注意力,构造E-ecaneck模块和E-ecablock模块作为基础模块,最大程度地对多通道提取足够多的有用信息,在每一阶段子网的多分辨率融合阶段融入空间注意力机制,提取并融合不同分辨率特征信息,通过上采样的方式输出所有融合低分辨率的高分辨率表征。在公开数据集MS COCO2017上进行验证和测试,结果表明,相比于高分辨率网络,该方法mAP提高3.4%,有效改善网络多分辨率表征的信息融合能力,明显提升基础高分辨率网络HRNet的估计精确度。