[1] ANAGNOSTOPOULOS C N, ILIOU T, GIANNOUKOS I.Features and classifiers for emotion recognition from speech:a survey from 2000 to 2011[J].Artificial Intelligence Review, 2015, 43(2):155-177. [2] YILDIRIM S, KAYA Y, KL F.A modified feature selection method based on metaheuristic algorithms for speech emotion recognition[J].Applied Acoustics, 2021, 173(4):107721-107732. [3] 余华, 颜丙聪.基于CTC-RNN的语音情感识别方法[J].电子器件, 2020, 43(4):934-937. YU H, YAN B C.Speech emotion recognition method based on CTC-RNN[J].Electronic devices, 2020, 43(4):934-937.(in Chinese) [4] 汪炳元.基于深度学习的语音情感识别研究[D].哈尔滨:哈尔滨工业大学, 2020. WANG B Y.Research on speech emotion recognition based on deep learning[D].Harbin:Harbin Institute of technology, 2020.(in Chinese) [5] BRUNI V, TARTAGLIONE M, VITULANO D.An iterative approach for spectrogram reassignment of frequency modulated multicomponent signals[J].Mathematics and Computers in Simulation, 2020, 176:96-119. [6] AYADI M E, KAMEL M S, KARRAY F.Survey on speech emotion recognition:features, classification schemes, and databases[J].Pattern Recognition, 2011, 44(3):572-587. [7] VLASSIS N, LIKAS A.A greedy EM algorithm for Gaussian mixture learning[J].Neural Processing Letters, 2002, 15(1):77-87. [8] HU H, XU M X, WU W.GMM supervector based SVM with spectral features for speech emotion recognition[C]//Proceedings of 2007 IEEE International Conference on Acoustics.Washington D.C., USA:IEEE Press, 2007:413-416. [9] ADITYA R, FABIO D T, MARK S.Hidden Markov models with random restarts versus boosting for malware detection[J].Journal of Computer Virology and Hacking Techniques, 2018, 15(4):97-107. [10] MAO Q, DONG M, HUANG Z, et al.Learning salient features for speech emotion recognition using convolutional neural networks[J].IEEE Transactions on Multimedia, 2014, 16(8):2203-2213. [11] ZHANG B, QUAN C, REN F.Performance of convolution neural network on the recognition of speech emotion and images[EB/OL].[2020-11-04].https://www.semanticscholar.org/paper/Performance-of-Convolution-Neural-Network-on-the-of-Zhang/f649f1a6e9231e96c57e12a5a58072c04d3ff067?p2df. [12] ZHENG W Q, YU J S, ZOU Y X.An experimental study of speech emotion recognition based on deep convolutional neural networks[C]//Proceedings of International Conference on Affective Computing and Intelligent Interaction.Washington D.C., USA:IEEE Press, 2015:827-831. [13] 曾润华, 张树群.改进卷积神经网络的语音情感识别方法[J].应用科学学报, 2018, 36(5):837-844. ZENG R H, ZHANG S Q.Speech emotion recognition based on improved convolutional neural network[J].Journal of Applied Sciences, 2018, 36(5):837-844.(in Chinese) [14] 缪裕青, 邹巍, 刘同来, 等.基于参数迁移和卷积循环神经网络的语音情感识别[J].计算机工程与应用, 2019, 55(10):135-140, 198. MIAO Y Q, ZOU W, LIU T L, et al.Speech emotion recognition based on parameter transfer and convolution recurrent neural network[J].Computer Engineering and Applications, 2019, 55(10):135-140, 198.(in Chinese) [15] 姜芃旭, 傅洪亮, 陶华伟, 等.一种基于卷积神经网络特征表征的语音情感识别方法[J].电子器件, 2019, 42(4):998-1001. JIANG P X, FU H L, TAO H W, et al.A speech emotion recognition method based on convolutional neural network feature representation[J].Electronic Devices, 2019, 42(4):998-1001.(in Chinese) [16] 冯天艺, 杨震.采用多任务学习和循环神经网络的语音情感识别算法[J].信号处理, 2019, 46(7):1133-1140. FENG T Y, YANG Z.Speech emotion recognition algorithm based on multi task learning and recurrent neural network[J].Signal Processing, 2019, 46(7):1133-1140.(in Chinese) [17] 张耿.多分类支持向量机的研究及在说话人识别中的应用[D].长沙:中南大学, 2007. ZHANG G.Research on multi class support vector machine and its application in speaker recognition[D].Changsha:Central South University, 2007.(in Chinese) [18] 陈旺.语音端点检测的鲁棒性研究[D].广州:广州大学, 2019. CHEN W.Robustness of speech endpoint detection[D].Guangzhou:Guangzhou University, 2019.(in Chinese) [19] 王林.基于非局部均值的图像去噪方法研究[D].西安:西安电子科技大学, 2014. WANG L.research on image denoising method based on nonlocal mean[D].Xi'an:Xi'an University of Electronic Science and Technology, 2014.(in Chinese) [20] 任杰, 郭卉, 姜囡.不同情感的语音声学特征分析[J].光电技术应用, 2019, 34(5):31-36, 62. REN J, GUO H, JIANG N.Analysis of acoustic characteristics of different emotions[J].Application of Optoelectronic Technology, 2019, 34(5):31-36, 62.(in Chinese) [21] 夏鼎, 徐文涛.基于生成对抗网络合成噪声的语音增强方法研究[J].电子技术应用, 2020, 46(11):56-59, 64. XIA D, XU W T.Research on speech enhancement method based on generating counter network synthetic noise[J].Application of Electronic Technology, 2020, 46(11):56-59, 64.(in Chinese) [22] 孔德廷.一种改进的基于对数谱估计的语音增强算法[J].声学技术, 2020, 39(2):208-213. KONG D T.An improved speech enhancement algorithm based on logarithmic spectral estimation[J].Acoustics, 2020, 39(2):208-213.(in Chinese) [23] 薛珊, 李广青, 吕琼莹, 等.基于卷积神经网络的反无人机系统声音识别方法[J].工程科学学报, 2020, 42(11):1516-1524. XUE S, LI G Q, LV Q Y, et al.Voice recognition method of anti UAV system based on convolutional neural network[J].Journal of Engineering Science, 2020, 42(11):1516-1524.(in Chinese) [24] LIN H S, JIA C, KE L X, et al.Deep and shallow features fusion based on deep convolutional neural network for speech emotion recognition[J].International Journal of Speech Technology 2018, 21(4):931-940. [25] 陈俊芬, 赵佳成, 韩洁, 等.基于深度特征表示的Softmax聚类算法[J].南京大学学报(自然科学), 2020, 56(4):533-540. CHEN J F, ZHAO J C, HAN J, et al.Softmax clustering algorithm based on depth feature representation[J].Journal of Nanjing University (Natural Science), 2020, 56(4):533-540.(in Chinese) [26] 万磊, 佟鑫, 盛明伟, 等.Softmax分类器深度学习图像分类方法应用综述[J].导航与控制, 2019, 18(6):1-9, 47. WAN L, TONG X, SHENG M W, et al.A review of the application of softmax classifier in deep learning image classification methods[J].Navigation and Control, 2019, 18(6):1-9, 47.(in Chinese) [27] CHEN M, HE X, YANG J, et al.3D convolutional recurrent neural networks with attention model for speech emotion recognition[J].IEEE Signal Processing Letters, 2018, 25(10):1440-1444. [28] JERMSITTIPARSERT K, ABDURRAHMAN A, SIRIATTAKUL P, et al.Pattern recognition and features selection for speech emotion recognition model using deep learning[J].International Journal of Speech Technology, 2020, 23(4):799-806. [29] LIM W, JANG D, LEE T.Speech emotion recognition using convolutional and recurrent neural networks[C]//Proceedings of 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference.Washington D.C., USA:IEEE Press, 2016:1-4. [30] FAROOQ M, HUSSAIN F, BALOCH N K, et al.Impact of feature selection algorithm on speech emotion recognition using deep convolutional neural network[J].Sensors, 2020, 20(21):6008-6016. [31] ÖZSEVEN T.A novel feature selection method for speech emotion recognition[J].Applied Acoustics, 2019, 146(6):320-326. |