[1] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. [2] SAUVOLA J, PIETIKÄINEN M.Adaptive document image binarization[J].Pattern Recognition, 2000, 33(2):225-236. [3] MANDAL S, DAS S, AGARWAL A, et al.Binarization of degraded handwritten documents based on morphological contrast intensification[C]//Proceedings of ICIIP'15.Washington D.C., USA:IEEE Press, 2015:73-78. [4] NAJAFI M H, SALEHI M E.A fast fault-tolerant architecture for sauvola local image thresholding algorithm using stochastic computing[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 2016, 24(2):808-812. [5] VATS E, HAST A, SINGH P.Automatic document image binarization using Bayesian optimization[C]//Proceedings of the 4th International Workshop on Historical Document Imaging and Processing.New York, USA:ACM Press, 2017:12-23. [6] JIA F X, SHI C Z, HE K, et al.Degraded document image binarization using structural symmetry of strokes[J].Pattern Recognition, 2018, 74:225-240. [7] BHOWMIK S, SARKAR R, DAS B, et al.GiB:a game theory inspired binarization technique for degraded document images[J].IEEE Transactions on Image Processing, 2019, 28(3):1443-1455. [8] KAUR A, RANI U, JOSAN G S.Modified Sauvola binarization for degraded document images[J].Engineering Applications of Artificial Intelligence, 2020, 92:103672. [9] PASTOR-PELLICER J, ESPAÑA-BOQUERA S, ZAMORA-MARTÍNEZ F, et al.Insights on the use of convolutional neural networks for document image binarization[C]//Proceedings of International Work-Conference on Artificial Neural Networks.Berlin, Germany:Springer, 2015:115-126. [10] VO Q N, KIM S H, YANG H J, et al.An MRF model for binarization of music scores with complex background[J].Pattern Recognition Letters, 2016, 69:88-95. [11] AYYALASOMAYAJULA K R, BRUN A.Historical document binarization combining semantic labeling and graph cuts[M]//SHARMA P, BIANCHI F.Image analysis.Berlin, Germany:Springer, 2017. [12] VO Q N, KIM S H, YANG H J, et al.Binarization of degraded document images based on hierarchical deep supervised network[J].Pattern Recognition, 2018, 74:568-586. [13] ZHAO J Y, SHI C Z, JIA F X, et al.Document image binarization with cascaded generators of conditional generative adversarial networks[J].Pattern Recognition, 2019, 96:106968. [14] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:3431-3440. [15] TENSMEYER C, MARTINEZ T.Document image binarization with fully convolutional neural networks[C]//Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition.Washington D.C., USA:IEEE Press, 2017:99-104. [16] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation[M]//NAVAB N, HORNEGGER J, WELLS W, et al.Medical image computing and computer-assisted intervention.Berlin, Germany:Springer, 2015. [17] 熊炜, 王鑫睿, 王娟, 等.融合背景估计与U-Net的文档图像二值化算法[J].计算机应用研究, 2020, 37(3):896-900. XIONG W, WANG X R, WANG J, et al.Document image binarization algorithm based on background estimation and U-Net[J].Application Research of Computers, 2020, 37(3):896-900.(in Chinese) [18] KANG S, IWANA B K, UCHIDA S.Complex image processing with less data-document image binarization by integrating multiple pre-trained U-Net modules[J].Pattern Recognition, 2021, 109:107577. [19] HUANG X, LI L, LIU R, et al.Binarization of degraded document images with global-local U-Nets[J].Optik, 2020, 203:164025. [20] 陈健.基于全卷积网络的低质量文档图像二值化方法研究[D].武汉:武汉理工大学, 2019. CHEN J.Research on degraded document image binarization methods based on fully convolutional networks[D].Wuhan:Wuhan University of Technology, 2019.(in Chinese) [21] CAO Y, XU J R, LIN S, et al.GCNet:non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshop.Washington D.C., USA:IEEE Press, 2019:1971-1980. [22] WANG X L, GIRSHICK R, GUPTA A, et al.Non-local neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7794-7803. [23] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. |