[1] DALCA A V, GUTTAG J, SABUNCU M R.Anatomical priors in convolutional networks for unsupervised biomedical segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:9290-9299. [2] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [3] LITJENS G, KOOI T, EHTESHAMI B B, et al.A survey on deep learning in medical image analysis[J].Medical Image Analysis, 2017, 42:60-88. [4] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [5] ZHOU X Y, SHEN M, RIGA C, et al.Focal FCN:towards small object segmentation with limited training data.[EB/OL].[2021-06-06].https://arxiv.org/abs/1711.01506v2. [6] JÉGOU S, DROZDZAL M, VAZQUEZ D, et al.The one hundred layers tiramisu:fully convolutional DenseNets for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:1175-1183. [7] 周岩, 周苑, 王旭辉.基于有限离散剪切波变换的灰度图像融合[J].计算机工程, 2016, 42(12):222-227. ZHOU Y, ZHOU Y, WANG X H.Grayscale image fusion based on finite discrete shearlet transform[J].Computer Engineering, 2016, 42(12):222-227.(in Chinese) [8] 范九伦, 赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报, 2007, 35(4):751-755. FAN J L, ZHAO F.Two-dimensional Otsu's curve thresholding segmentation method for gray-level images[J].Acta Electronica Sinica, 2007, 35(4):751-755.(in Chinese) [9] CHAN T, VESE L.An active contour model without edges[C]//Proceedings of Conference on Scale-Space Theories in Computer Vision.Berlin, Germany:Springer, 1999:141-151. [10] MUMFORD D, SHAH J.Optimal approximations by piecewise smooth functions and associated variational problems[J].Communications on Pure and Applied Mathematics, 1989, 42(5):577-685. [11] ZHENG Y L, CHEN K.A hierarchical algorithm for multiphase texture image segmentation[J].ISRN Signal Processing, 2012, 12:53-62. [12] VESE L A, CHAN T F.A multiphase level set framework for image segmentation using the Mumford and shah model[J].International Journal of Computer Vision, 2002, 50(3):271-293. [13] MORAR A, MOLDOVEANU F, GRÖLLER E.Image segmentation based on active contours without edges[C]//Proceedings of the 8th International Conference on Intelligent Computer Communication and Processing.Washington D.C., USA:IEEE Press, 2012:213-220. [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2012, 60:84-90. [15] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-06-06].https://arxiv.org/abs/1409.1556. [16] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1-9. [17] HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2261-2269. [18] COUPÉP, MANJÓN J V, FONOV V, et al.Patch-based segmentation using expert priors:application to hippocampus and ventricle segmentation[J].NeuroImage, 2011, 54(2):940-954. [19] LI H M, YANG X, LIANG J M, et al.Contrastive rendering for ultrasound image segmentation[EB/OL].[2021-06-06].https://arxiv.org/abs/2010.04928. [20] PÉREZ-GARCÍA F, RODIONOV R, ALIM-MARVASTI A, et al.Simulation of brain resection for cavity segmentation using self-supervised and semi-supervised learning[EB/OL].[2021-06-06].https://arxiv.org/abs/2006.15693. [21] DING W B, LI L, ZHUANG X H, et al.Cross-modality multi-atlas segmentation using deep neural networks[C]//Proceedings of Medical Image Computing and Computer Assisted Intervention.Berlin, Germany:Springer, 2020:233-242. [22] ALARIFS M M R, KNAPP K, SLABAUGH G.Shape-aware deep convolutional neural network for vertebrae segmentation[C]//Proceedings of Computational Methods and Clinical Applications in Musculoskeletal Imaging.Berlin, Germany:Springer, 2018:12-24. [23] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [24] LI D, HU J, WANG C H, et al.Involution:inverting the inherence of convolution for visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:12316-12325. [25] CHEN X, WILLIAMS B M, VALLABHANENI S R, et al.Learning active contour models for medical image segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:11624-11632. [26] BRESSON X, ESEDOḠLU S, VANDERGHEYNST P, et al.Fast global minimization of the active contour/snake model[J].Journal of Mathematical Imaging and Vision, 2007, 28(2):151-167. [27] FANG S, LI K Y, LI Z.Salient positions based attention network for image classification[EB/OL].[2021-06-06].https://arxiv.org/abs/2106.04996. [28] PEREIRA S, PINTO A, ALVES V, et al.Brain tumor segmentation using convolutional neural networks in MRI images[J].IEEE Transactions on Medical Imaging, 2016, 35(5):1240-1251. [29] ZHENG Y L, CHEN K.A general model for multiphase texture segmentation and its applications to retinal image analysis[J].Biomedical Signal Processing and Control, 2013, 8(4):374-381. [30] WOLTERINK J M, LEINER T, VIERGEVER M A, et al.Automatic segmentation and disease classification using cardiac cine MR images[EB/OL].[2021-06-06].https://link.springer.com/chapter/10.1007/978-3-319-75541-0_11. [31] BAUMGARTNER C F, KOCH L M, POLLEFEYS M, et al.An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation[EB/OL].[2021-06-06].https://www.semanticscholar.org/paper/An-Exploration-of-2D-and-3D-Deep-Learning-for-MR-Baumgartner-Koch/68353b0cfa6cd44b5ff97ce957084b72bc84934c. [32] YEONGGUL J, YOONMI H, SEONGMIN H, et al.Automatic segmentation of LV and RV in cardiac MRI[EB/OL].[2021-06-06].https://link.springer.com/chapter/10.1007/978-3-319-75541-0_17. [33] FABIAN I, PAUL F J, PETER M F, etal.Automatic cardiac disease assessment on cine-mri via time-series segmentation and domain specific features[EB/OL].[2021-06-06].https://www.xueshufan.com/publication/2727040849. |