[1] 王秋萍, 张志祥, 朱旭芳.图像分割方法综述[J].信息记录材料, 2019, 20(7):12-14. WANG Q P, ZHANG Z X, ZHU X F.Comprehensive summary of image segmentation[J].Information Recording Materials, 2019, 20(7):12-14.(in Chinese) [2] 林瑶, 田捷.医学图像分割方法综述[J].模式识别与人工智能, 2002, 15(2):192-204. LIN Y, TIAN J.Survey of medical image segmentation method[J].Pattern Recognition and Artificial Intelligence, 2002, 15(2):192-204.(in Chinese) [3] ZHOU K.Medical image recognition, segmentation and parsing[M].Cambridge, USA:Academic Press, 2015. [4] 王囡, 侯志强, 赵梦琦, 等.结合边缘检测的语义分割算法[J].计算机工程, 2021, 47(7):257-265. WAGN N, HOU Z Q, ZHAO M Q, et al.Semantic segmentation algorithm combined with edge detection[J].Computer Engineering, 2021, 47(7):257-265.(in Chinese) [5] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [6] KHENED M, ALEX V, KRISHNAMURTHI G.Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest[C]//Proceedings of the 8th International Workshop on Statistical Atlases and Computational Models of the Heart.Berlin, Germany:Springer, 2018:1-10. [7] HUANG G, LIU Z, LAURENS V D M, et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4700-4708. [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [9] SABOUR S, FROSST N, HINTON G E.Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:3856-3866. [10] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++:a nested U-Net architecture for medical image segmentation[C]//Proceedings of International Workshop on Deep Learning in Medical Image Analysis.Berlin, Germany:Springer, 2018:3-11. [11] HUANG H, LIN L, TONG R, et al.UNet 3+:a full-scale connected unet for medical image segmentation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2020:1055-1059. [12] SABOUR S, FROSST N, HINTON G.Matrix capsules with EM routing[C]//Proceedings of the 6th International Conference on Learning Representations.Vancouver, BC, Canada:[s.n.], 2018:1-15. [13] GIRI D, ACHARYA U R, MARTIS R J, et al.Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform[J].Knowledge-Based Systems, 2013, 37:274-282. [14] MOBINY A, NGUYEN H V.Fast capsnet for lung cancer screening[EB/OL].[2020-10-14].https://arxiv.org/pdf/1806.07416.pdf. [15] HE Y, QIN W, WU Y, et al.Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network[J].Journal of X-Ray Science and Technology, 2020, 28(3):1-13. [16] LALONDE R, BAGCI U.Capsules for object segmentation[EB/OL].[2020-10-12].https://arxiv.org/abs/1804.04241v1. [17] JORDAN M, JACOBS R.Hierarchical mixtures of experts and the EM algorithm[J].Neural Computation, 1994, 6(2):181-214. [18] PATRICK M K, ADEKOYA A F, MIGHTY A A, et al. Capsule networks-a survey[EB/OL].[2020-10-15]. https://www.sciencedirect.com/science/article/pii/S1319157819309322. [19] SHIRAISHI J, KATSURAGAWA S, IKEZOE J, et al.Development of a digital image database for chest radiographs with and without a lung nodule:receiver operating characteristic analysis of radiologists' detection of pulmonary nodules[J].American Journal of Roentgenology, 2000, 174(1):71-74. [20] GINNEKEN B V, STEGMANN M B, LOOG M.Segmentation of anatomical structures in chest radiographs using supervised methods:a comparative study on a public database[J].Medical Image Analysis, 2006, 10(1):19-40. [21] BONHEUR S, ŠTERN D, PAYER C, et al.Matwo-capsnet:a multi-label semantic segmentation capsules network[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2019:664-672. |