[1] ARNOLD M, SOERJOMATARAM I, FERLAY J, et al.Global incidence of oesophageal cancer by histological subtype in 2012[J].Gut, 2015, 64(3):381-387. [2] CHEN W Q, ZHENG R S, BAADE P D, et al.Cancer statistics in China, 2015[J].CA:A Cancer Journal for Clinicians, 2016, 66(2):115-132. [3] 李鹏, 王拥军, 陈光勇, 等.中国巴雷特食管及其早期腺癌筛查与诊治共识(2017万宁)[J].中国实用内科杂志, 2017, 37(9):798-809. LI P, WANG Y J, CHEN G Y, et al.Chinese consensus:screening, diagnosis and management of Barrett's esophagus and adenocarcinoma(2017 Wanning)[J].Chinese Journal of Medicine, 2017, 37(9):798-809.(in Chinese) [4] 丘文峰.基于Python的医学图像处理框架及其应用[D].广州:华南师范大学, 2010. QIU W F.Python-based medical image processing framework and its application[D].Guangzhou:South China Normal University, 2010.(in Chinese) [5] 俞益洲, 马杰超, 石德君, 等.深度学习在医学影像分析中的应用综述[J].数据与计算发展前沿, 2019, 1(6):37-52. YU Y Z, MA J C, SHI D J, et al.Application of deep learning in medical imaging analysis:a survey[J].Frontiers of Data & Computing, 2019, 1(6):37-52.(in Chinese) [6] 王弈, 李传富.人工智能方法在医学图像处理中的研究新进展[J].中国医学物理学杂志, 2013, 30(3):4138-4143. WANG Y, LI C F.The new research progress of artificial intelligent methods in medical image processing[J].Chinese Journal of Medical Physics, 2013, 30(3):4138-4143.(in Chinese) [7] IOFFE S, SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning.New York, USA:ACM Press, 2015:448-456. [8] MUTHUKRISHNAN R, RADHA M.Edge detection techniques for image segmentation[J].International Journal of Computer Science & Information Technology, 2012, 3(6):250-254. [9] KAGANAMI H G, ZOU B J.Region-based segmentation versus edge detection[C]//Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing.Washington D.C., USA:IEEE Press, 2009:1217-1221. [10] SHI J B, MALIK J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [11] BOYKOV Y, FUNKA-LEA G.Graph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision, 2006, 70(2):109-131. [12] ROTHER C."GrabCut":Interactive foreground extraction using iterated graph cuts[J].Proceedings of Siggraph, 2004, 23(3):309-314. [13] COATES A, ANDREW Y.Learning feature representations with K-means[EB/OL].[2021-08-01].https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=17E81A9ECB385E299D5CC6021E8F3871?doi=10.1.1.269.5607&rep=rep1&type=pdf. [14] LUXBURG U.A tutorial on spectral clustering[J].Statistics and Computing, 2007, 17(4):395-416. [15] COMANICIU D, RAMESH V, MEER P.Real-time tracking of non-rigid objects using mean shift[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2003:142-149. [16] ACHANTA R, SHAJI A, SMITH K, et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. [17] 吴永芳, 杨鑫, 徐敏, 等.基于K均值聚类的图割医学图像分割算法[J].计算机工程, 2011, 37(5):232-234. WU Y F, YANG X, XU M, et al.Graph cuts medical image segmentation algorithm based on K-means clustering[J].Computer Engineering, 2011, 37(5):232-234.(in Chinese) [18] 杨柳, 陈永林, 王翊, 等.基于核图割模型的肝脏CT图像肿瘤分割[J].计算机工程, 2014, 40(3):238-243. YANG L, CHEN Y L, WANG Y, et al.Tumor segmentation for liver CT images based on kernel graph cut model[J].Computer Engineering, 2014, 40(3):238-243.(in Chinese) [19] SHELHAMER E, LONG J, DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [20] TONG N, GOU S P, YANG S Y, et al.Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks[J].Medical Physics, 2018, 45(10):4558-4567. [21] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [22] DROZDZAL M, VORONTSOV E, CHARTRAND G, et al.The importance of skip connections in biomedical image segmentation[C]//Proceedings of Deep Learning and Data Labeling for Medical Applications.New York, USA:Springer, 2016:179-187. [23] BROSCH T, TANG L Y W, YOO Y, et al.Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation[J].IEEE Transactions on Medical Imaging, 2016, 35(5):1229-1239. [24] 林志洁, 郑秋岚, 梁涌, 等.基于内卷U-Net的医学图像分割模型[J].计算机工程, 2022, 48(8):180-186. LIN Z J, ZHENG Q L, LIANG Y, et al.Medical image segmentation model based on involution U-Net[J].Computer Engineering, 2022, 48(8):180-186.(in Chinese) [25] 仵晨阳, 何瑶.基于U-Net网络的食管癌病灶的分割研究[J].计算机与数字工程, 2020, 48(11):2734-2738. WU C Y, HE Y.Segmentation of esophageal cancer lesions based on U-Net network[J].Computer & Digital Engineering, 2020, 48(11):2734-2738.(in Chinese) [26] KRÄHENBÜHL P, KOLTUN V.Efficient inference in fully connected CRFs with Gaussian edge potentials[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2011:109-117. [27] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [28] CHEN L C, PAPANDREOU G, SCHROFF F, et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].[2021-08-01].https://arxiv.org/pdf/1706.05587.pdf. [29] LIU W, RABINOVICH A, BERG A C.ParseNet:looking wider to see better[EB/OL].[2021-08-01].https://arxiv.org/pdf/1506.04579.pdf. [30] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [31] ROMERA E, ÁLVAREZ J M, BERGASA L M, et al.ERFNet:efficient residual factorized ConvNet for real-time semantic segmentation[J].IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1):263-272. [32] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [33] GLOROT X, BORDES A, BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and statistics.New York, USA:ACM Press, 2011:315-323. |