[1] LEBANOFF L, SONG K, DERNONCOURT F, et al.Scoring sentence singletons and pairs for abstractive summarization[EB/OL].[2021-02-15].https://arxiv.org/abs/1906.00077. [2] SUBRAMANIAN S, LI R, PILAULT J, et al.On extractive and abstractive neural document summarization with transformer language models[EB/OL].[2021-02-15]. https://arxiv.org/abs/1909.03186. [3] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.NewYork, USA:ACM Press, 2017:6000-6010. [4] SEE A, LIU P J, MANNING C D.Get to the point:summarization with pointer-generator networks[EB/OL].[2021-02-15].https://arxiv.org/pdf/1704.04368.pdf. [5] LUHN H P.The automatic creation of literature abstracts[J].IBM Journal of Research and Development, 1958, 2(2):159-165. [6] EDMUNDSON H P.New methods in automatic extracting[J].Journal of the ACM, 1969, 16(2):264-285. [7] LIN C Y, HOVY E.Identifying topics by position[EB/OL].[2021-02-15].http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=18A483239494376ACA4520EFBD742575?doi=10.1.1.13.8985&rep=rep1&type=pdf. [8] KUPIEC J, PEDERSEN J, CHEN F.A trainable document summarizer[C]//Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 1995:68-73. [9] LIN C Y.Training a selection function for extraction[C]//Proceedings of the 18th International Conference on Information and Knowledge Management.New York, USA:ACM Press, 1999:55-62. [10] MIHALCEA R, TARAU P. Textrank:bringing order into text[EB/OL].[2021-02-15].https://www.researchgate.net/profile/Paul-Tarau/publication/200042361_TextRank_Bringing_Order_into_Text/links/0912f508a98af2fe24000000/TextRank-Bringing-Order-into-Text.pdf. [11] ERKAN G, RADEV D R.LexRank:graph-based lexical centrality as salience in text summarization[EB/OL].[2021-02-15].https://arxiv.org/abs/1109.2128v1. [12] NALLAPATI R, ZHAI F, ZHOU B.SummaRuNNer:a recurrent neural network based sequence model for extractive summarization of documents[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2017:3075-3081. [13] ZHOU Q, YANG N, WEI F, et al.Neural document summarization by jointly learning to score and select sentences[EB/OL].[2021-02-15]. https://arxiv.org/pdf/1807.02305.pdf. [14] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2021-02-15].https://arxiv.org/pdf/1810.04805.pdf. [15] LIU Y, LAPATA M.Text summarization with pretrainedencoders[EB/OL].[2021-02-15].https://arxiv.org/abs/1908.08345. [16] SUTSKEVER I, VINYALS O, LE Q V.Sequence to sequence learning with neural networks[J].Advances in Neural Information Processing Systems, 2014, 4(1):3104-3112. [17] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.[S.l.]:AAAI Press, 2014:1724-1734. [18] BAHDANAU D, CHO K H, BENGIO Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2021-02-15].https://arxiv.org/pdf/1409.0473.pdf. [19] VINYALS O, FORTUNATO M, JAITLY N.Pointer networks[EB/OL].[2021-02-15].https://arxiv.org/pdf/1506.03134.pdf. [20] RUSH A M, CHOPRA S, WESTON J.A neural attention model for abstractive sentence summarization[EB/OL].[2021-02-15].https://arxiv.org/pdf/1509.00685.pdf. [21] SANKARAN B, MI H, AL-ONAIZAN Y, et al.Temporal attention model for neural machine translation[EB/OL].[2021-02-15].https://arxiv.org/abs/1608.02927. [22] PAULUS R, XIONG C, SOCHER R.A deep reinforced model for abstractive summarization[EB/OL].[2021-02-15].https://arxiv.org/pdf/1705.04304.pdf. [23] KINGMA D P, BA J L.Adam:a method for stochastic optimization[EB/OL].[2021-02-15].http://de.arxiv.org/pdf/1412.6980. [24] LIN C Y.Rouge:a package for automatic evaluation of summaries[EB/OL].[2021-02-15].http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=657245BA32160BCB52B6B8972D0FE238?doi=10.1.1.126.4764&rep=rep1&type=pdf. [25] LAFFERTY J., MCCALLUM A, PEREIRA F.Conditional random fields:Probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning.New York, USA:ACM Press, 2001:282-289. |