作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (5): 229-234. doi: 10.19678/j.issn.1000-3428.0061650

• 图形图像处理 • 上一篇    下一篇

基于隐式描述符的三维模型对应关系计算

HAYTHEM Alhag, 杨军   

  1. 兰州交通大学 电子与信息工程学院, 兰州 730070
  • 收稿日期:2021-05-14 修回日期:2021-06-18 发布日期:2021-07-12
  • 作者简介:HAYTHEM Alhag(1984—),男,硕士研究生,主研方向为三维模型对应关系计算;杨军(通信作者),教授。
  • 基金资助:
    国家自然科学基金(61862039);甘肃省科技计划(20JR5RA429);兰州市人才创新创业项目(2020-RC-22);兰州交通大学天佑创新团队项目(TY202002)。

Calculation of 3D Model Correspondence Based on Implicit Descriptor

HAYTHEM Alhag, YANG Jun   

  1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2021-05-14 Revised:2021-06-18 Published:2021-07-12

摘要: 三维模型对应关系计算在自动驾驶、虚拟现实、智能交通等领域得到广泛关注与应用。三维模型在几何结构和尺度发生很大变化时,低层次几何信息描述符所提取的特征将不足,从而使得对应关系计算结果准确率不高。为此,提出一种通过引入先验知识来完成三维模型对应关系计算的方法。利用深度学习网络模仿人类计算先验知识,以对模型各部分之间的几何相似性进行编码,解决模型在各部分发生显著变化时无法应用低层次几何信息计算模型间对应关系的问题。使用多视图卷积神经网络对模型各部分相应的视图进行预分割并标记,根据模型对应表面点之间的相似度隐式地计算数据驱动描述符,在数据驱动描述符的指导下计算最终的三维模型对应关系。实验结果表明,相较基于先验知识的计算方法,该方法能提高三维模型对应关系计算结果的准确率,且可有效降低测地误差。

关键词: 三维模型, 对应关系, 多视图卷积神经网络, 数据驱动描述符, 先验知识

Abstract: The calculation of correspondences between 3D models has been widely studied and applied in fields such as autonomous vehicles, virtual reality, and intelligent transportation.However, if the geometric structure and scale of the 3D models compared differ substantially, features extracted by low-level geometric information descriptors are insufficient, as is the accuracy of the results of such correspondence calculations.Therefore, this paper proposes a method to calculate the correspondence of 3D models by introducing a priori knowledge.A deep learning network is used to simulate human prior knowledge to encode geometric similarities between the parts of two models.The proposed method solves the problem that low-level geometric information cannot be used to calculate correspondence relationships between models when their parts differ significantly.A multi-view convolutional neural network is used to pre-segment and mark the corresponding views of each part of the model, to implicitly calculate a data-driven descriptor according to the similarity between corresponding surface points, and finally to calculate the output correspondence between the two 3D models under the guidance of the data-driven descriptor.The experimental results show that the proposed method was able to improve the accuracy of the results of calculations of correspondence relationships between 3D models compared with a calculation method based on a priori knowledge, and it can effectively reduce the geodetic error.

Key words: 3D model, correspondence, multi-view convolutional neural network, data-driven descriptor, prior knowledge

中图分类号: