[1]LI B,LU Y,LI C,et al.A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries[J].Computer Vision and Image Understanding,2015,131(C):1-27.
[2]郭丽丽,丁世飞.深度学习研究进展[J].计算机科学,2015,42(5):28-33.
[3]WU Z,SONG S,KHOSLA A,et al.3d shapenets:a deep representation for volumetric shapes[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1912-1920.
[4]XU X,TODOROVIC S.Beam search for learning a deep convolutional neural network of 3D shapes[C]//Proceedings of International Conference on Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:3506-3511.
[5]MATURANA D,SCHERER S.VoxNet:a 3d convolutional neural network for real-time object recognition[C]//Proceedings of Conference on Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2015:922-928.
[6]SEDAGHAT N,ZOLFAGHARI M,BROX T,et al.Orientation-boosted voxel nets for 3D object recognition[EB/OL].[2017-05-10].http://cn.arxiv.org/pdf/1604.03351v2.
[7]GARCIA-GARCIA A,GOMEZ-DONOSO F,GARCIA-RODRIGUEZ J,et al.PointNet:a 3D convolutional neural network for real-time object class recogni-tion[C]//Proceedings of International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2016:1578-1584.
[8]BROCK A,LIM T,RITCHIE J M,et al.Generative and discriminative voxel modeling with convolutional neural networks[EB/OL].[2017-05-10].http://cn.arxiv.org/pdf/1608.04236v2.
(下转第227页)
(上接第221页)
[9]谢智歌,王岳青,窦勇,等.基于卷积-自动编码机的三维形状特征学习[J].计算机辅助设计与图形学学报,2015,27(11):2058-2064.
[10]RIEGLER G,ULUSOY A O,GEIGER A.OctNet:learning deep 3D representations at high resolutions[C]//Pro-ceedings of IEEE Press Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:6620-6629.
[11]WANG P S,LIU Y,GUO Y X,et al.O-CNN:octree-based convolutional neural networks for 3D shape analysis[J].ACM Transactions on Graphics,2017,36(4):72.
[12]SHI B,BAI S,ZHOU Z,et al.DeepPano:deep panoramic representation for 3-D shape recognition[J].IEEE Signal Processing Letters,2015,22(12):2339-2343.
[13]SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3d shape recogni-tion[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2015:945-953.
[14]JOHNS E,LEUTENEGGER S,DAVISON A J.Pairwise decomposition of image sequences for active multi-view recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:3813-3822.
[15]董水龙,李海生,祝晓斌,等.利用CNN特征和BoWs的三维模型检索算法[J].广西大学学报(自然科学版),2017,42(5):1787-1792.
[16]QI C R,SU H,NIESSNER M,et al.Volumetric and multi-view CNNs for object classification on 3D data[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:5648-5656.
[17]SHILANE P,MIN P,KAZHDAN M,et al.The princeton shape benchmark[C]//Proceedings of IEEE Conference on Shape Modeling Applications.Washington D.C.,USA:IEEE Press,2004:167-178.
[18]HEGDE V,ZADEH R.FusionNet:3D object classification using multiple data representations[Z].2016. |