[1] HOTELLING H.Relations between two sets of variates[J].Biometrika, 1936, 28(3/4):321-377. [2] HARDOON D R, SZEDMAK S, SHAWE-TAYLOR J.Canonical correlation analysis:an overview with application to learning methods[J].Neural Computation, 2004, 16(12):2639-2664. [3] 张恩豪, 陈晓红, 刘鸿, 等.基于典型相关分析的多视图降维算法综述[J].计算机工程, 2020, 46(2):1-10. ZHANG E H, CHEN X H, LIU H, et al.Overview of multi-view dimension reduction algorithm based on canonical correlation analysis[J].Computer Engineering, 2020, 46(2):1-10.(in Chinese) [4] LUO J, TJAHJADI T.Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation[J].IEEE Access, 2020, 8:32485-32501. [5] HE Z C, YANG Y, QIAO L, et al.Canonical correlation analysis and key performance indicator based fault detection scheme with application to marine diesel supercharging systems[C]//Proceeding of Chinese Control Conference.Guangzhou, China:[s.n.], 2019:5156-5160. [6] 白云歌, 郭炳晖, 米志龙, 等.面向互联网金融平台的违约风险量化模型[J].计算机工程, 2018, 44(12):108-114. BAI Y G, GUO B H, MI Z L, et al.Quantitative model of default risk for internet financial platform[J].Computer Engineering, 2018, 44(12):108-114.(in Chinese) [7] SUN T K, CHEN S C, YANG J Y, et al.A novel method of combined feature extraction for recognition[C]//Proceedings of the 8th IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2008:1043-1048. [8] YANG M, SUN S L.Multi-view uncorrelated linear discriminant analysis with applications to handwritten digit recognition[C]//Proceedings of International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2014:4175-4181. [9] SUN S L, XIE X J, YANG M.Multiview uncorrelated discriminant analysis[J].IEEE Transactions on Cybernetics, 2016, 46(12):3272-3284. [10] SHAWE-TAYLOR J, CRISTIANINI N.Kernel methods for pattern analysis[M].Cambridge, USA:Cambridge University Press, 2005. [11] GAO J J, LI F Z, WANG B J, et al.Unsupervised nonlinear adaptive manifold learning for global and local information[J].Tsinghua Science and Technology, 2020, 26(2):163-171. [12] RAMACHANDRAM D, TAYLOR G W.Deep multimodal learning:a survey on recent advances and trends[J].IEEE Signal Processing Magazine, 2017, 34(6):96-108. [13] MELZER T, REITER M, BISCHOF H.Kernel canonical correlation analysis[J].Journal of Financial Economic Policy, 2001, 6(2):179-196. [14] LOPEZ-PAZ D, SRA S, SMOLA A, et al.Randomized nonlinear component analysis[C]//Proceedings of the 31st International Conference on Machine Learning.New York, USA:ACM Press, 2014:1359-1367. [15] SUN T K, CHEN S C.Locality preserving CCA with applications to data visualization and pose estimation[J].Image and Vision Computing, 2007, 25(5):531-543. [16] ZHANG H J, ZHANG J X, LIU Y W, et al.Multiset canonical correlations analysis with global structure preservation[J].IEEE Access, 2020, 8:53595-53603. [17] ANDREW G, ARORA R, BILMES J A.Deep canonical correlation analysis[C]//Proceedings of the 30th International Conference on Machine Learning.New York, USA:ACM Press, 2013:1247-1255. [18] WANG W, ARORA R, LIVESCU K, et al.On deep multi-view representation learning[C]//Proceedings of the 32nd International Conference on Machine Learning.New York, USA:ACM Press, 2015:1083-1092. [19] LIU Y, LI Y, YUAN Y H, et al.Supervised deep canonical correlation analysis for multiview feature learning[C]//Proceedings of International Conference on Neural Information Processing.Berlin, Germany:Springer, 2017:575-582. [20] ELMADANY N E D, HE Y F, LING G.Multiview learning via deep discriminative canonical correlation analysis[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2016:2409-2413. [21] YANG Q, GU Y D, WU D S.Survey of incremental learning[C]//Proceedings of the 31st Chinese Control and Decision Conference.Washington D.C., USA:IEEE Press, 2019:399-404. |