[1] HARPAZ R, DUMOUCHEL W, SHAH N H, et al.Novel data-mining methodologies for adverse drug event discovery and analysis[J].Clinical Pharmacology and Therapeutics, 2012, 91(6):1010-1021. [2] WANG W, HAERIAN K, SALMASIAN H, et al.A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations[J].AMIA Annual Symposium Proceedings, 2011, 25(3):64-70. [3] SOHN S, KOCHER J P A, CHUTE C G, et al.Drug side effect extraction from clinical narratives of psychiatry and psychology patients[J].Journal of the American Medical Informatics Association, 2011, 18(1):144-149. [4] WARRER P, HANSEN E H, JUHL JENSEN L, et al.Using text-mining techniques in electronic patient records to identify ADRs from medicine use[J].British Journal of Clinical Pharmacology, 2012, 73(5):674-684. [5] WU H, FANG H, STANHOPE S J.Exploiting online discussions to discover unrecognized drug side effects[J].Methods of Information in Medicine, 2013, 52(2):152-159. [6] YATES A, GOHARIAN N.ADRTrace:detecting expected and unexpected adverse drug reactions from user reviews on social media sites[C]//Proceedings of the 35th European Conference on Advances in Information Retrieval.Berlin, Germany:Springer, 2013:816-819. [7] SARKER A, GONZALEZ G.Portable automatic text classification for adverse drug reaction detection via multi-corpus training[J].Journal of Biomedical Informatics, 2015, 53(4):196-207. [8] NIKFARJAM A, SARKER A, O'CONNOR K, et al.Pharmacovigilance from social media:mining adverse drug reaction mentions using sequence labeling with word embedding cluster features[J].Journal of the American Medical Informatics Association, 2015, 22(3):671-681. [9] LEE K, QADIR A, HASAN S A, et al.Adverse drug event detection in tweets with semi-supervised convolutional neural networks[EB/OL].[2021-06-20].https://dl.acm.org/doi/10.1145/3038912.3052671. [10] COCOS A, FIKS A G, MASINO A J.Deep learning for pharmacovigilance:recurrent neural network architectures for labeling adverse drug reactions in Twitter posts[J].Journal of the American Medical Informatics Association, 2017, 24(4):813-821. [11] HUYNH T, HE Y, WILLIS A, et al.Adverse drug reaction classification with deep neural networks[C]//Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers.Osaka, Japan:[s.n.], 2016:877-887. [12] PANDEY C, IBRAHIM Z, WU H H, et al.Improving RNN with attention and embedding for adverse drug reactions[C]//Proceedings of 2017 International Conference on Digital Health.New York, USA:ACM Press, 2017:67-71. [13] WEI J, ZOU K.EDA:easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language.Stroudsburg, USA:Association for Computational Linguistics, 2019:6381-6387. [14] EDUNOV S, OTT M, AULI M, et al.Understanding back-translation at scale[EB/OL].[2021-06-22].https://arxiv.org/abs/1808.09381. [15] XIE Q Z, DAI Z H, HOVY E, et al.Unsupervised data augmentation for consistency training[EB/OL].[2021-06-22].https://arxiv.org/abs/1904.12848. [16] GUO H Y, MAO Y Y, ZHANG R C.Augmenting data with mixup for sentence classification:an empirical study[EB/OL].[2021-06-22].https://arxiv.org/abs/1905.08941. [17] BERTHELOT D, CARLINI N, GOODFELLOW I, et al.MixMatch:a holistic approach to semi-supervised learning[EB/OL].[2021-06-22].https://www.researchgate.net/publication/332932671_MixMatch_A_Holistic_Approach_to_Semi-Supervised_Learning. [18] SOHN K, BERTHELOT D, LI C L, et al.FixMatch:simplifying semi-supervised learning with consistency and confidence[EB/OL].[2021-06-22].https://arxiv.org/abs/2001.07685. [19] ZHANG H Y, CISSE M, DAUPHIN Y N, et al.Mixup:beyond empirical risk minimization[EB/OL].[2021-06-22].https://arxiv.org/abs/1710.09412. [20] SUN Y, WANG S, LI Y, et al.ERNIE:enhanced representation through knowledge integration[C]//Proceedings of AAAI Conference on Artificial Intelligence.San Francisco, USA:AAAI Press, 2020:8968-8975. [21] CHEN J A, YANG Z C, YANG D Y.MixText:linguistically-informed interpolation of hidden space for semi-supervised text classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:2147-2157. [22] LEE D H.Pseudo-label:the simple and efficient semi-supervised learning method for deep neural networks[EB/OL].[2021-06-22].https://www.researchgate.net/publication/280581078. [23] LAINE S, AILA T M.Temporal ensembling for semi-supervised learning[J].IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, 12:143-152. [24] TARVAINEN A, VALPOLA H.Mean teachers are better role models:weight-averaged consistency targets improve semi-supervised deep learning results[C]//Proceedings of International Conference on Learning Representations.Vancouver, Canada:[s.n.], 2017:156-168. |