[1] BRENNER D J, HALL E J.Computed tomography-an increasing source of radiation exposure[J].The New England Journal of Medicine, 2007, 357(22):2277-2284. [2] LU Z X, XIA W J, HUANG Y Q, et al.MANAS:multi-scale and multi-level neural architecture search for low-dose CT denoising[EB/OL].[2021-12-05].https://arxiv.org/pdf/2103.12995v1.pdf. [3] BUADES A, COLL B, MOREL J M.A non-local algorithm for image denoising[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2005:60-65. [4] KANG D, SLOMKA P, NAKAZATO R, et al.Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm[EB/OL].[2021-12-05].https://www.spie.org/Publications/Proceedings/Paper/10.1117/12.2006907?SSO=1. [5] FUMENE FERUGLIO P, VINEGONI C, GROS J, et al.Block matching 3D random noise filtering for absorption optical projection tomography[J].Physics in Medicine and Biology, 2010, 55(18):5401-5415. [6] 李传朋, 秦品乐, 张晋京.基于深度卷积神经网络的图像去噪研究[J].计算机工程, 2017, 43(3):253-260. LI C P, QIN P L, ZHANG J J.Research on image denoising based on deep convolutional neural network[J].Computer Engineering, 2017, 43(3):253-260.(in Chinese) [7] DONG C, LOY C C, HE K M, et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [8] CHEN H, ZHANG Y, KALRA M K, et al.Low-dose CT with a residual encoder-decoder convolutional neural network[J].IEEE Transactions on Medical Imaging, 2017, 36(12):2524-2535. [9] 章云港, 杨剑锋, 易本顺.低剂量CT图像去噪的改进型残差编解码网络[J].上海交通大学学报, 2019, 53(8):983-989. ZHANG Y G, YANG J F, YI B S.Improved residual encoder-decoder network for low-dose CT image denoising[J].Journal of Shanghai Jiao Tong University, 2019, 53(8):983-989.(in Chinese) [10] 吕晓琪, 吴凉, 谷宇, 等.基于深度卷积神经网络的低剂量CT肺部去噪[J].电子与信息学报, 2018, 40(6):1353-1359. LÜ X Q, WU L, GU Y, et al.Low dose CT lung denoising model based on deep convolution neural network[J].Journal of Electronics & Information Technology, 2018, 40(6):1353-1359.(in Chinese) [11] YANG Q S, YAN P K, ZHANG Y B, et al.Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J].IEEE Transactions on Medical Imaging, 2018, 37(6):1348-1357. [12] GHOLIZADEH-ANSARI M, ALIREZAIE J, BABYN P.Deep learning for low-dose CT denoising using perceptual loss and edge detection layer[J].Journal of Digital Imaging, 2020, 33(2):504-515. [13] LI M, HSU W, XIE X D, et al.SACNN:self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network[J].IEEE Transactions on Medical Imaging, 2020, 39(7):2289-2301. [14] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[J].Communications of the ACM, 2020, 63(11):139-144. [15] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2017:214-223. [16] 朱斯琪, 王珏, 蔡玉芳.基于改进型循环一致性生成对抗网络的低剂量CT去噪算法[J].光学学报, 2020, 40(22):70-78. ZHU S Q, WANG J, CAI Y F.Low-dose CT denoising algorithm based on improved cycle GAN[J].Acta Optica Sinica, 2020, 40(22):70-78.(in Chinese) [17] YUE Z, ZHAO Q, ZHANG L, et al.Dual adversarial network:toward real-world noise removal and noise generation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:41-58. [18] ZHANG K, ZUO W M, CHEN Y J, et al.Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing, 2017, 26(7):3142-3155. [19] LI X M, CHEN H, QI X J, et al.H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J].IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674. [20] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [21] LI C, XU K, LIU J, et al.Triple generative adversarial networks[EB/OL].[2021-12-05].https://arxiv.org/pdf/1912.09784v1.pdf. [22] MA Y J, WEI B, FENG P, et al.Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning[J].IEEE Access, 2020, 8:67519-67529. [23] JOHNSON J, ALAHI A, FEI-FEI L.Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:694-711. [24] HE K M, CHEN X L, XIE S N, et al.Masked autoencoders are scalable vision learners[EB/OL].[2021-12-05].https://arxiv.org/abs/2111.06377. [25] ISOLA P, ZHU J Y, ZHOU T H, et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5967-5976. [26] ZHU J Y, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2242-2251. [27] AAPM.Low dose CT grand challenge[EB/OL].[2021-12-05].http://www.aapm.org/GrandChallenge/LowDoseCT/. [28] LI Z, SHI W, XING Q, et al.Low-dose CT image denoising with improving WGAN and hybrid loss function[J].Computational and Mathematical Methods in Medicine, 2021, 15:2973108. [29] WINKLER S, MOHANDAS P.The evolution of video quality measurement:from PSNR to hybrid metrics[J].IEEE Transactions on Broadcasting, 2008, 54(3):660-668. [30] WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. [31] XUE W F, ZHANG L, MOU X Q, et al.Gradient magnitude similarity deviation:a highly efficient perceptual image quality index[J].IEEE Transactions on Image Processing, 2014, 23(2):684-695. [32] ZIAEI NAFCHI H, SHAHKOLAEI A, HEDJAM R, et al.Mean deviation similarity index:efficient and reliable full-reference image quality evaluator[J].IEEE Access, 2016, 4:5579-5590. |