[1] MENG W J,YANG D Q,XIAO Y H.Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2020:1091-1100. [2] TANG J X,WANG K.Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2018:565-573. [3] KANG W C,MCAULEY J.Self-attentive sequential recommendation[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2018:197-206. [4] RENDLE S,FREUDENTHALER C,SCHMIDT-THIEME L.Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web.New York,USA:ACM Press,2010:811-820. [5] SONG W P,SHI C C,XIAO Z P,et al.Autoint:automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2019:1161-1170. [6] RENDLE S.Factorization machines[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2011:995-1000. [7] HUANG J,ZHAO W X,DOU H J,et al.Improving sequential recommendation with knowledge-enhanced memory networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York,USA:ACM Press,2018:505-514. [8] QUADRANA M,KARATZOGLOU A,HIDASI B,et al.Personalizing session-based recommendations with hierarchical recurrent neural networks[C]//Proceedings of the 11th ACM Conference on Recommender Systems.New York,USA:ACM Press,2017:130-137. [9] WANG P F,FAN Y,XIA L,et al.KERL:a knowledge-guided reinforcement learning model for sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2020:209-218. [10] XIA X,YIN H Z,YU J L,et al.Self-supervised hypergraph convolutional networks for session-based recommendation[J].Artificial Intelligence,2021,35(5):4503-4511. [11] LIU P J,ZHANG H Z,LIAN W,et al.Multi-level wavelet convolutional neural networks[J].IEEE Access,2019,7:74973-74985. [12] WANG J Y,WANG Z,LI J F,et al.Multilevel wavelet decomposition network for interpretable time series analysis[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2018:2437-2446. [13] 梁小慧,郭晟楠,万怀宇.基于自适应小波分解的时间序列分类方法[J].计算机工程,2022,48(4):81-88,98. LIANG X H,GUO S N,WAN H Y.Time series classification method based on adaptive wavelet decomposition[J].Computer Engineering,2022,48(4):81-88,98.(in Chinese) [14] XU X X,FANG Z W,YU Q,et al.Gating-adapted wavelet multiresolution analysis for exposure sequence modeling in CTR prediction[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2022:1-5. [15] YAO T S,YI X Y,CHENG D Z,et al.Self-supervised learning for large-scale item recommendations[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.New York,USA:ACM Press,2021:4321-4330. [16] MA J X,ZHOU C,YANG H X,et al.Disentangled self-supervision in sequential recommenders[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2020:483-491. [17] QIU R H,HUANG Z,YIN H Z,et al.Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2022:813-823. [18] HIDASI B,KARATZOGLOU A,BALTRUNAS L,et al.Session-based recommendations with recurrent neural networks[C]//Proceedings of International Conference on Learning Representations.Washington D.C.,USA:IEEE Press,2016:1-10. [19] XIE R B,LIU Q,WANG L D,et al.Contrastive cross-domain recommendation in matching[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2022:4226-4236. [20] ZHANG Y X,LIU Y,XU Y H,et al.Enhancing sequential recommendation with graph contrastive learning[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2022:1-8. [21] MA Y S,HE Y Z,ZHANG A,et al.CrossCBR:cross-view contrastive learning for bundle recommendation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2022:1233-1241. [22] CHEN Y J,LIU Z W,LI J,et al.Intent contrastive learning for sequential recommendation[C]//Proceedings of ACM Web Conference.New York,USA:ACM Press,2022:2172-2182. [23] SUN F,LIU J,WU J,et al.BERT4Rec:sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2019:1441-1450. [24] ZHANG T T,ZHAO P P,LIU Y C,et al.Feature-level deeper self-attention network for sequential recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2019:4320-4326. [25] ZHOU K,YU H,ZHAO W X,et al.Filter-enhanced MLP is all you need for sequential recommendation[C]//Proceedings of ACM Web Conference.New York,USA:ACM Press,2022:2388-2399. [26] ZHOU K,WANG H,ZHAO W X,et al.S3Rec:self-supervised learning for sequential recommendation with mutual information maximization[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York,USA:ACM Press,2020:1893-1902. |