1 |
DIWAKAR M, KUMAR M. A review on CT image noise and its denoising. Biomedical Signal Processing and Control, 2018, 42, 73- 88.
doi: 10.1016/j.bspc.2018.01.010
|
2 |
MAISONNEUVE P, RAMPINELLI C, BERTOLOTTI R, et al. Low-dose computed tomography screening for lung cancer in people with workplace exposure to asbestos. Lung Cancer, 2019, 131, 23- 30.
doi: 10.1016/j.lungcan.2019.03.003
|
3 |
KALRA M K, MAHER M M, TOTH T L, et al. Strategies for CT radiation dose optimization. Radiology, 2004, 230 (3): 619- 628.
doi: 10.1148/radiol.2303021726
|
4 |
MANDUCA A, YU L, TRZASKO J D, et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Medical Physics, 2009, 36 (11): 4911- 4919.
doi: 10.1118/1.3232004
|
5 |
BALDA M, HORNEGGER J, HEISMANN B. Ray contribution masks for structure adaptive sinogram filtering. IEEE Transactions on Medical Imaging, 2012, 31 (6): 1228- 1239.
doi: 10.1109/TMI.2012.2187213
|
6 |
SUKOVIC P, CLINTHORNE N H. Penalized weighted least-squares image reconstruction for dual energy X-ray transmission tomography. IEEE Transactions on Medical Imaging, 2000, 19 (11): 1075- 1081.
doi: 10.1109/42.896783
|
7 |
HA S, MUELLER K. A GPU-accelerated multivoxel update scheme for Iterative Coordinate Descent (ICD) optimization in Statistical Iterative CT Reconstruction (SIR). IEEE Transactions on Computational Imaging, 2018, 4 (3): 355- 365.
doi: 10.1109/TCI.2018.2833622
|
8 |
CHANG Z Q, ZHANG R Q, THIBAULT J B, et al. Modeling and pre-treatment of photon-starved CT data for iterative reconstruction. IEEE Transactions on Medical Imaging, 2017, 36 (1): 277- 287.
doi: 10.1109/TMI.2016.2606338
|
9 |
WANG T, NAKAMOTO K, ZHANG H Y, et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction. IEEE Transactions on Nuclear Science, 2017, 64 (10): 2742- 2760.
doi: 10.1109/TNS.2017.2750199
|
10 |
DONG Y Q, HANSEN P C, KJER H M. Joint CT reconstruction and segmentation with discriminative dictionary learning. IEEE Transactions on Computational Imaging, 2018, 4 (4): 528- 536.
doi: 10.1109/TCI.2018.2858139
|
11 |
DIWAKAR M, KUMAR M. CT image denoising using NLM and correlation-based wavelet packet thresholding. IET Image Processing, 2018, 12 (5): 708- 715.
doi: 10.1049/iet-ipr.2017.0639
|
12 |
ZHAO T, HOFFMAN J, MCNITT-GRAY M, et al. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics. Medical Physics, 2019, 46 (1): 190- 198.
doi: 10.1002/mp.13252
|
13 |
JIA L N, ZHANG Q, SHANG Y, et al. Denoising for low-dose CT image by discriminative weighted nuclear norm minimization. IEEE Access, 2018, 6, 46179- 46193.
doi: 10.1109/ACCESS.2018.2862403
|
14 |
KANG E, MIN J, YE J C. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Medical Physics, 2017, 44 (10): e360- e375.
|
15 |
CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Transactions on Medical Imaging, 2017, 36 (12): 2524- 2535.
doi: 10.1109/TMI.2017.2715284
|
16 |
WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT. IEEE Transactions on Medical Imaging, 2017, 36 (12): 2536- 2545.
doi: 10.1109/TMI.2017.2708987
|
17 |
YI X, BABYN P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. Journal of Digital Imaging, 2018, 31 (5): 655- 669.
doi: 10.1007/s10278-018-0056-0
|
18 |
熊景琦, 桑庆兵, 胡聪. 结合感知损失与双重对抗网络的低剂量CT图像去噪. 计算机工程, 2023, 49 (2): 213-221, 230.
doi: 10.19678/j.issn.1000-3428.0063806
|
|
XIONG J Q, SANG Q B, HU C. Low-dose CT image denoising combining perceptual loss and dual adversarial network. Computer Engineering, 2023, 49 (2): 213-221, 230.
doi: 10.19678/j.issn.1000-3428.0063806
|
19 |
史再峰, 程明, 欧阳顺馨, 等. 基于DCPAN的低剂量能谱CT图像去噪方法. 天津大学学报(自然科学与工程技术版), 2023, 56 (2): 184- 192.
URL
|
|
SHI Z F, CHENG M, OUYANG S X, et al. Low dose spectral computed tomography image-based denoising method via DCPAN. Journal of Tianjin University (Science and Technology), 2023, 56 (2): 184- 192.
URL
|
20 |
TIAN C W, ZHENG M H, ZUO W M, et al. Multi-stage image denoising with the wavelet transform. Pattern Recognition, 2023, 134, 109050.
doi: 10.1016/j.patcog.2022.109050
|
21 |
HUANG J J, DRAGOTTI P L. WINNet: wavelet-inspired invertible network for image denoising. IEEE Transactions on Image Processing, 2022, 31, 4377- 4392.
doi: 10.1109/TIP.2022.3184845
|
22 |
LIU P J, ZHANG H Z, LIAN W, et al. Multi-level wavelet convolutional neural networks. IEEE Access, 2019, 7, 74973- 74985.
doi: 10.1109/ACCESS.2019.2921451
|
23 |
李坤伦, 张鲁, 许宏科, 等. 小波域扩张网络用于低剂量CT图像快速重建. 西安电子科技大学学报, 2020, 47 (4): 86- 93.
URL
|
|
LI K L, ZHANG L, XU H K, et al. Waveletdomain dilated network for fast low-dose CT image reconstruction. Journal of Xidian University, 2020, 47 (4): 86- 93.
URL
|
24 |
SELESNICK I W, BARANIUK R G, KINGSBURY N C. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 2005, 22 (6): 123- 151.
doi: 10.1109/MSP.2005.1550194
|
25 |
SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1874-1883.
|
26 |
ZHANG K, ZUO W M, GU S H, et al. Learning deep CNN denoiser prior for image restoration[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3929-3938.
|
27 |
|
28 |
|
29 |
|
30 |
TRUNG N T, TRINH D H, TRUNG N L, et al. Low-dose CT image denoising using deep convolutional neural networks with extended receptive fields. Signal, Image and Video Processing, 2022, 16 (7): 1963- 1971.
doi: 10.1007/s11760-022-02157-8
|