1 |
YU B, LEE Y J, SOHN K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network. Emerging Technologies, 2020, 114, 189- 204.
doi: 10.1016/j.trc.2020.02.013
|
2 |
刘博, 王明烁, 李永, 等. 深度学习在时空序列预测中的应用综述. 北京工业大学学报, 2021, 47 (8): 925- 941.
URL
|
|
LIU B, WANG M S, LI Y, et al. Deep learning for spatio-temporal sequence forecasting: a survey. Journal of Beijing University of Technology, 2021, 47 (8): 925- 941.
URL
|
3 |
|
4 |
HAN S, KIM J. Video scene change detection using convolution neural network[C]//Proceedings of International Conference on Information Technology. New York, USA: ACM Press, 2017: 116-119.
|
5 |
MA T S, KUANG P, TIAN W H. An improved recurrent neural networks for 3d object reconstruction. Applied Intelligence, 2020, 50 (3): 905- 923.
doi: 10.1007/s10489-019-01523-3
|
6 |
PRADHYUMNA P, SHREYA G P, MOHANA. Graph neural network in image and video understanding using deep learning for computer vision applications[C]//Proceedings of the 2nd International Conference on Electronics and Sustainable Communication Systems. Washington D. C., USA: IEEE Press, 2021: 1183-1189.
|
7 |
ROY A, ROY K K, ALI A A, et al. Unified spatio-temporal modeling for traffic forecasting using graph neural network[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2021: 1-8.
|
8 |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述. 计算机学报, 2020, 43 (5): 755- 780.
URL
|
|
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network. Chinese Journal of Computers, 2020, 43 (5): 755- 780.
URL
|
9 |
WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (1): 4- 24.
doi: 10.1109/TNNLS.2020.2978386
|
10 |
LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. [2022-06-10]. https://arxiv.org/abs/1707.01926.
|
11 |
CHEN C, LI K L, TEO S G, et al. Gated residual recurrent graph neural networks for traffic prediction. Artificial Intelligence, 2019, 33 (1): 485- 492.
URL
|
12 |
HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 2011, 30 (2): 129- 150.
doi: 10.1016/j.acha.2010.04.005
|
13 |
|
14 |
SEO Y, DEFFERRARD M, VANDERGHEYNST P, et al. Structured sequence modeling with graph convolutional recurrent networks. Berlin, Germany: Springer, 2018: 362- 373.
|
15 |
KADAMBARI S K, PRABHAKAR CHEPURI S. Fast graph convolutional recurrent neural networks[C]//Proceedings of the 53rd Conference on Signals, Systems, and Computers. Washington D. C., USA: IEEE Press, 2020: 467-471.
|
16 |
NAGY A M, SIMON V. Survey on traffic prediction in smart cities. Pervasive and Mobile Computing, 2018, 50, 148- 163.
doi: 10.1016/j.pmcj.2018.07.004
|
17 |
ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (9): 3848- 3858.
doi: 10.1109/TITS.2019.2935152
|
18 |
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[EB/OL]. [2022-06-10]. https://arxiv.org/abs/1709.04875.
|
19 |
|
20 |
黎维, 陶蔚, 周星宇, 等. 时空序列预测方法综述. 计算机应用研究, 2020, 37 (10): 2881- 2888.
doi: 10.19734/j.issn.1001-3695.2019.05.0184
|
|
LI W, TAO W, ZHOU X Y, et al. Survey of spatio-temporal sequence prediction methods. Application Research of Computers, 2020, 37 (10): 2881- 2888.
doi: 10.19734/j.issn.1001-3695.2019.05.0184
|
21 |
|
22 |
BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2022-06-10]. https://arxiv.org/abs/1803.01271.
|
23 |
CHEN X, WANG J S, XIE K Q. TrafficStream: a streaming traffic flow forecasting framework based on graph neural networks and continual learning[EB/OL]. [2022-06-10]. https://arxiv.org/abs/2106.06273.
|
24 |
|
25 |
GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Artificial Intelligence, 2019, 33 (1): 922- 929.
URL
|
26 |
SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. Artificial Intelligence, 2020, 34 (1): 914- 921.
URL
|
27 |
WU Z H, PAN S R, LONG G D, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 753-763.
|
28 |
ORESHKIN B N, AMINI A, COYLE L, et al. FC-GAGA: fully connected gated graph architecture for spatio-temporal traffic forecasting. Artificial Intelligence, 2021, 35 (10): 9233- 9241.
URL
|