1 |
XU C , FENG S , ZUO Y . Relation-aware dynamic attributed graph attention network for stocks recommendation. Pattern Recognition, 2022, 121, 108119.
doi: 10.1016/j.patcog.2021.108119
|
2 |
QIU R H, YIN H Z, HUANG Z, et al. GAG: global attributed graph neural network for streaming session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 669-678.
|
3 |
LI X , WU Y , ESTER M , et al. SCHAIN-IRAM: an efficient and effective semi-supervised clustering algorithm for attributed heterogeneous information networks. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (4): 1980- 1992.
doi: 10.1109/TKDE.2020.2997938
|
4 |
LI X, WU Y, ESTER M, et al. Semi-supervised clustering in attributed heterogeneous information networks[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA: ACM Press, 2017: 1621-1629.
|
5 |
HUANG Z , ZHONG X , WANG Q , et al. Detecting community in attributed networks by dynamically exploring node attributes and topological structure. Knowledge-Based Systems, 2020, 196, 105760.
doi: 10.1016/j.knosys.2020.105760
|
6 |
ZHUO S , BU J , ZHANG Z , et al. Cross multi-type objects clustering in attributed heterogeneous information network. Knowledge-Based Systems, 2020, 194, 105458.
doi: 10.1016/j.knosys.2019.105458
|
7 |
ISLAM M S , ALI M E , KANG Y B , et al. Keyword aware influential community search in large attributed graphs. Information Systems, 2022, 104, 101914.
doi: 10.1016/j.is.2021.101914
|
8 |
XIE X , SONG M , LIU C , et al. Effective influential community search on attributed graph. Neurocomputing, 2021, 444, 111- 125.
doi: 10.1016/j.neucom.2020.08.088
|
9 |
WANG X F , LI J H , YANG L , et al. Weakly-supervised learning for community detection based on graph convolution in attributed networks. International Journal of Machine Learning and Cybernetics, 2021, 12 (12): 3529- 3539.
doi: 10.1007/s13042-021-01400-x
|
10 |
刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展. 计算机研究与发展, 2016, 53 (2): 247- 261.
URL
|
|
LIU Z Y , SUN M S , LIN Y K , et al. Knowledge representation learning: a review. Journal of Computer Research and Development, 2016, 53 (2): 247- 261.
URL
|
11 |
冶忠林, 赵海兴, 张科, 等. 基于邻节点和关系模型优化的网络表示学习. 计算机研究与发展, 2019, 56 (12): 2562- 2577.
URL
|
|
YE Z L , ZHAO H X , ZHANG K , et al. Network representation learning using the optimizations of neighboring vertices and relation model. Journal of Computer Research and Development, 2019, 56 (12): 2562- 2577.
URL
|
12 |
PAN Y , ZOU J , QIU J . Joint network embedding of network structure and node attributes via deep autoencoder. Neurocomputing, 2022, 468, 198- 210.
doi: 10.1016/j.neucom.2021.10.032
|
13 |
MENDONÇA M R F , BARRETO A M S , ZIVIANI A . Approximating network centrality measures using node embedding and machine learning. IEEE Transactions on Network Science and Engineering, 2021, 8 (1): 220- 230.
doi: 10.1109/TNSE.2020.3035352
|
14 |
GUPTA C, JAIN Y, DE A, et al. Integrating transductive and inductive embeddings improves link prediction accuracy[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 3043-3047.
|
15 |
PARK H, NEVILLE J. Exploiting interaction links for node classification with deep graph neural networks[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2019: 3223-3230.
|
16 |
GONG M G, CHEN C, XIE Y, et al. Community preserving network embedding based on memetic algorithm[C]//Proceedings of IEEE Transactions on Emerging Topics in Computational Intelligence. Washington D.C., USA: IEEE Press, 2018: 108-118.
|
17 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710.
|
18 |
|
19 |
TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York, USA: ACM Press, 2015: 1067-1077.
|
20 |
GROVER A, LESKOVEC J. Node2Vec: scalable feature learning for networks[C]//Proceedings of International Conference on Knowledge Discovery & Data Mining. Washington D.C., USA: IEEE Press, 2016: 855-864.
|
21 |
HUANG T, ZHOU L H, WANG L Z, et al. Attributed network embedding with community preservation[C]//Proceedings of the 7th IEEE International Conference on Data Science and Advanced Analytics. Washington D.C., USA: IEEE Press, 2020: 334-343.
|
22 |
LIU X X, WANG K, WANG C D, et al. Attention-based multi-proximity preserved attributed network embedding[C]//Proceedings of International Joint Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2021: 1-8.
|
23 |
陈亦琦, 钱铁云, 李万理, 等. 基于复合关系图卷积的属性网络嵌入方法. 计算机研究与发展, 2020, 57 (8): 1674- 1682.
URL
|
|
CHEN Y Q , QIAN T Y , LI W L , et al. Exploiting composite relation graph convolution for attributed network embedding. Journal of Computer Research and Development, 2020, 57 (8): 1674- 1682.
URL
|
24 |
ZHANG D K , YIN J , ZHU X Q , et al. Attributed network embedding via subspace discovery. Data Mining and Knowledge Discovery, 2019, 33 (6): 1953- 1980.
doi: 10.1007/s10618-019-00650-2
|
25 |
GAO H C, HUANG H. Deep attributed network embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2018: 3364-3370.
|
26 |
SHEIKH N , KEFATO Z , MONTRESOR A . Gat2Vec: representation learning for attributed graphs. Computing, 2019, 101 (3): 187- 209.
doi: 10.1007/s00607-018-0622-9
|