1 |
KAPANIPATHI P, THOST V, SANKALP PATEL S, et al. Infusing knowledge into the textual entailment task using graph convolutional networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8074- 8081.
doi: 10.1609/aaai.v34i05.6318
|
2 |
GALETZKA F, ROSE J, SCHLANGEN D, et al. Space efficient context encoding for non-task-oriented dialogue generation with graph attention transformer[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2021: 15-26.
|
3 |
MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[EB/OL]. [2023-01-05]. https://arxiv.org/abs/2002.11927.
|
4 |
ZHANG Z Q, SHI Y Y, YUAN C F, et al. Object relational graph with teacher-recommended learning for video captioning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 22-36.
|
5 |
潘嘉诚, 董一鸿, 陈华辉. 基于图神经网络的自闭症辅助诊断研究综述. 计算机工程, 2022, 48(9): 1- 11.
URL
|
|
PAN J C, DONG Y H, CHEN H H. Review of research on auxiliary diagnosis of autism based on graph neural networks. Computer Engineering, 2022, 48(9): 1- 11.
URL
|
6 |
|
7 |
|
8 |
CHI P H, CHUNG P H, WU T H, et al. Audio ALBERT: a lite BERT for self-supervised learning of audio representation[C]//Proceedings of 2021 IEEE Spoken Language Technology Workshop. Washington D. C., USA: IEEE Press, 2021: 123-156.
|
9 |
WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 726-735.
|
10 |
王曙燕, 郭睿涵, 孙家泽. 基于图对比学习的MOOC推荐方法. 计算机工程, 2023, 49(1): 57-64, 72.
URL
|
|
WANG S Y, GUO R H, SUN J Z. Recommendation method for MOOC based on graph contrastive learning. Computer Engineering, 2023, 49(1): 57-64, 72.
URL
|
11 |
QIU J Z, CHEN Q B, DONG Y X, et al. GCC: graph contrastive coding for graph neural network pre-training[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 1150-1160.
|
12 |
ZHU Y Q, XU Y C, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the 2021 Web Conference. New York, USA: ACM Press, 2021: 2069-2080.
|
13 |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61- 80.
doi: 10.1109/TNN.2008.2005605
|
14 |
|
15 |
|
16 |
|
17 |
KRASANAKIS E, PAPADOPOULOS S, KOMPATSIARIS I. p2pGNN: a decentralized graph neural network for node classification in peer-to-peer networks. IEEE Access, 2022, 10, 34755- 34765.
doi: 10.1109/ACCESS.2022.3159688
|
18 |
LIBEN-NOWELL D, KLEINBERG J. The link prediction problem for social networks[C]//Proceedings of the 12th International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2003: 556-559.
|
19 |
YING R, YOU J X, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 4805-4815.
|
20 |
|
21 |
|
22 |
苗雨欣, 宋春花, 牛保宁, 等. 双通道图协同过滤推荐算法. 计算机工程, 2022, 48(8): 121- 128.
URL
|
|
MIAO Y X, SONG C H, NIU B N, et al. Dual-channel graph collaborative filtering recommendation algorithm. Computer Engineering, 2022, 48(8): 121- 128.
URL
|
23 |
XIA X, YIN H Z, YU J L, et al. Self-supervised hypergraph convolutional networks for session-based recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4503- 4511.
doi: 10.1609/aaai.v35i5.16578
|
24 |
YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1434-1443.
|
25 |
|
26 |
HALKO N, MARTINSSON P G, TROPP J A. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 2011, 53(2): 217- 288.
doi: 10.1137/090771806
|
27 |
CHEN L, WU L, HONG R, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach[EB/OL]. [2023-01-05]. https://arxiv.org/abs/2001.10167.pdf.
|
28 |
HE X H, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[EB/OL]. [2023-01-05]. https://arxiv.org/abs/2002.02126.
|
29 |
|
30 |
WANG J L, DING K Z, HONG L J, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 1101-1110.
|
31 |
YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[EB/OL]. [2023-01-05]. https://arxiv.org/abs/2101.06448.
|
32 |
XIA L H, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 70-79.
|
33 |
XIA L H, HUANG C, ZHANG C X. Self-supervised hypergraph transformer for recommender systems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 2100-2109.
|
34 |
YU J L, YIN H Z, XIA X, et al. Are graph augmentations necessary? simple graph contrastive learning for recom-mendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1294-1303.
|