作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (3): 68-77. doi: 10.19678/j.issn.1000-3428.0067204

• 人工智能与模式识别 • 上一篇    下一篇

基于方面-词性感知的方面级情感分析

夏卫欢1,*(), 廖列法1,2, 张守信1, 张燕琴1   

  1. 1. 江西理工大学信息工程学院, 江西 赣州 341000
    2. 江西理工大学软件工程学院, 江西 南昌 333000
  • 收稿日期:2023-03-16 出版日期:2024-03-15 发布日期:2024-03-13
  • 通讯作者: 夏卫欢
  • 基金资助:
    国家自然科学基金(71761018); 国家自然科学基金(71462018)

Aspect-Based Sentiment Analysis Based on Aspect-Part-Of-Speech Perception

Weihuan XIA1,*(), Liefa LIAO1,2, Shouxin ZHANG1, Yanqin ZHANG1   

  1. 1. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    2. School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 333000, Jiangxi, China
  • Received:2023-03-16 Online:2024-03-15 Published:2024-03-13
  • Contact: Weihuan XIA

摘要:

方面级情感分析是自然语言处理的研究热点之一,其任务目的是预测句子中给定方面的情感极性。目前已有研究大多忽略了方面词和特定词性单词在过滤情感极性相关上下文语义信息和理解上下文语法信息中的作用。为此,提出一种基于方面-词性感知的图卷积网络ASP_POSGCN。采用双向长短期记忆网络建模上下文和词性信息,经由门控机制筛选方面词相关上下文语义信息,再使用词性信息隐藏层状态进一步过滤;同时设计方面-词性感知矩阵算法,根据不同词性单词对方面词情感极性的贡献重构句子原始依存关系以获取重构依存句法图,将原始依存句法图和重构依存句法图应用于双通道图卷积网络和多图感知机制;最后,使用过滤后的上下文语义信息与双通道图卷积网络的输出计算注意力得到最终分类表示。实验结果表明,该模型在Twitter、Laptop14、Restaurant14和Restaurant16 4个公开数据集上的准确率分别为74.57%、79.15%、83.84%、91.23%,F1值分别为72.59%、75.76%、77.00%、77.11%,与传统方面级情感分析基准模型相比均有提升,有助于方面级的情感极性分类。

关键词: 方面级情感分析, 图卷积网络, 门控机制, 词性信息, 多图感知机制

Abstract:

Aspect-Based Sentiment Analysis(ABSA) is a research focal point in natural language processing, whose task is to predict the emotional polarity of a given aspect in a sentence. Currently, most studies have overlooked the role of aspect words and specific Part-Of-Speech(POS) words in filtering contextual semantic information related to emotional polarity and understanding contextual grammatical information. Accordingly, a Graph Convolutional Network(GCN) based on aspect POS perception, ASP_POSGCN, is proposed. It adopts a bidirectional Long Short-Term Memory(LSTM) network to model context and POS information, filtering contextual semantic information related to aspect words through a gate mechanism, and further filtering using the state of the POS information hiding layer. Simultaneously, it designs an aspect POS perception matrix algorithm to reconstruct the original dependency relationship of sentences based on the contribution of different POS words to the emotional polarity of aspect words, to obtain the reconstructed dependency syntax graph. The original and reconstructed dependency syntax graphs are applied to the dual-channel GCN and multi-graph perception mechanism. Finally, it uses the filtered contextual semantic information and the output of the dual channel GCN, and attention is calculated to obtain the final classification representation. The experimental results demonstrate that the accuracy of the model on four public datasets, Twitter, Laptop14, Restaurant14 and Restaurant16, is 74.57%, 79.15%, 83.84%, and 91.23%, and the F1 values are 72.59%, 75.76%, 77.00%, and 77.11%, respectively. Compared with the traditional ABSA benchmark model, it has improved and is beneficial to sentiment polarity classification in aspects.

Key words: Aspect-Based Sentiment Analysis(ABSA), Graph Convolution Network(GCN), gate mechanism, Part-Of-Speech(POS) information, multi-graph perception mechanism