1 |
FAN T Y, ZHANG R J. Research on automatic lane line extraction method based on onboard lidar point cloud data[C]//Proceedings of the 2nd International Conference on Digital Signal and Computer Communications. Washington D. C., USA: IEEE Press, 2022: 161-169.
|
2 |
缪建起, 王宏涛, 田普光. 整合图卷积与PointNet的机载激光雷达点云分类. 激光与光电子学进展, 2022, 59 (22): 328- 334.
URL
|
|
MIAO J Q, WANG H T, TIAN P G. Airborne light detection and ranging point cloud classification via graph convolution and PointNet integration. Laser & Optoelectronics Progress, 2022, 59 (22): 328- 334.
URL
|
3 |
郑维刚, 赵振威, 唐红, 等. 基于三维激光点云的隧道电缆敷设质量参数自动检测方法. 半导体光电, 2023, 44 (3): 460- 466.
URL
|
|
ZHENG W G, ZHAO Z W, TANG H, et al. Automatic detection method for tunnel cable laying quality parameters based on three-dimensional laser point cloud. Semiconductor Optoelectronics, 2023, 44 (3): 460- 466.
URL
|
4 |
李美佳, 于泽宽, 刘晓, 等. 点云算法在医学领域的研究进展. 中国图象图形学报, 2020, 25 (10): 2013- 2023.
doi: 10.11834/jig.200253
|
|
LI M J, YU Z K, LIU X, et al. Progress of point cloud algorithm in medical field. Journal of Image and Graphics, 2020, 25 (10): 2013- 2023.
doi: 10.11834/jig.200253
|
5 |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 945-953.
|
6 |
MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2015: 922-928.
|
7 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[EB/OL]. [2023-04-05]. https://arxiv.org/abs/1612.00593.
|
8 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2023-04-05]. https://arxiv.org/abs/1706.02413.
|
9 |
YAN X, ZHENG C D, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5589-5598.
|
10 |
ZHAO H S, JIANG L, FU C W, et al. PointWeb: enhancing local neighborhood features for point cloud processing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5565-5573.
|
11 |
|
12 |
KOMARICHEV A, ZHONG Z C, HUA J. A-CNN: annularly convolutional neural networks on point clouds[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 7421-7430.
|
13 |
|
14 |
WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 9621-9630.
|
15 |
|
16 |
THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6411-6420.
|
17 |
HOANG L, LEE S H, LEE E J, et al. GSV-NET: a multi-modal deep learning network for 3D point cloud classification. Applied Sciences, 2022, 12 (1): 483.
doi: 10.3390/app12010483
|
18 |
SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3693-3702.
|
19 |
WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 2019, 38 (5): 1- 12.
|
20 |
ZHANG K G, HAO M, WANG J, et al. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features[EB/OL]. [2023-04-05]. https://arxiv.org/abs/1904.10014.
|
21 |
LIN Z H, HUANG S Y, WANG Y C F. Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1800-1809.
|
22 |
LI R H, LI X Z, HENG P A, et al. PointAugment: an auto-augmentation framework for point cloud classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6378-6387.
|
23 |
YANG J C, ZHANG Q, NI B B, et al. Modeling point clouds with self-attention and gumbel subset sampling[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 3323-3332.
|
24 |
GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer. Computational Visual Media, 2021, 7 (2): 187- 199.
doi: 10.1007/s41095-021-0229-5
|
25 |
LIU Y H, TIAN B, LÜ Y S, et al. Point cloud classification using content-based transformer via clustering in feature space. CAA Journal of Automatica Sinica, 2024, 11 (1): 231- 239.
|
26 |
HUANG C Q, JIANG F, HUANG Q H, et al. Dual-graph attention convolution network for 3-D point cloud classification. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (4): 4813- 4825.
doi: 10.1109/TNNLS.2022.3162301
|
27 |
李维刚, 陈婷, 田志强. 基于孪生自适应图卷积算法的点云分类与分割. 计算机应用, 2023, 43 (11): 3396- 3402.
URL
|
|
LI W G, CHEN T, TIAN Z Q. Point cloud classification and segmentation based on siamese adaptive graph convolution algorithm. Journal of Computer Applications, 2023, 43 (11): 3396- 3402.
URL
|
28 |
蒋玉英, 陈心雨, 李广明, 等. 图神经网络及其在图像处理领域的研究进展. 计算机工程与应用, 2023, 59 (7): 15- 30.
URL
|
|
JIANG Y Y, CHEN X Y, LI G M, et al. Graph neural network and its research progress in field of image processing. Computer Engineering and Applications, 2023, 59 (7): 15- 30.
URL
|
29 |
张学典, 方慧. BTDGCNN: 面向三维点云拓扑结构的BallTree动态图卷积神经网络. 小型微型计算机系统, 2022, 43 (11): 2342- 2347.
URL
|
|
ZHANG X D, FANG H. BTDGCNN: BallTree dynamic graph convolution neural network for 3D point cloud topology. Journal of Chinese Computer Systems, 2022, 43 (11): 2342- 2347.
URL
|
30 |
|
31 |
WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1912-1920.
|
32 |
MAATEN L, HINTON G. Visualizing data using T-SNE. Journal of Machine Learning Research, 2008, 9, 2579- 2605.
|