[1] WANG Y Q, HUANG M L, ZHU X Y,et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2016:606-615. [2] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2014:1746-1751. [3] TANG D Y, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2016:214-224. [4] ZHANG M, QIAN T Y. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2020:3540-3549. [5] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2019:4567-4577. [6] HUANG B X, CARLEY K. Syntax-aware aspect level sentiment classification with graph attention networks[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2019:5469-5477. [7] SUN K, ZHANG R C, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2019:5679-5688. [8] TAY Y, TUAN L A, HUI S C. Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S. l.]:AAAI Press, 2018:5956-5963. [9] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [10] DAUPHIN Y N, GRANGIER D. Predicting distributions with linearizing belief networks[EB/OL].[2023-01-02]. https://arxiv.org/pdf/1511.05622.pdf. [11] 田乔鑫, 孔韦韦, 滕金保, 等. 基于并行混合网络与注意力机制的文本情感分析模型[J]. 计算机工程, 2022, 48(8):266-273. TIAN Q X, KONG W W, TENG J B, et al. Text sentiment analysis model based on parallel hybrid network and attention mechanism[J]. Computer Engineering, 2022, 48(8):266-273.(in Chinese) [12] 刘佳, 王潇, 王红旗. 基于LSTM的中文微博情感分析方法[J]. 计算机工程与应用, 2020, 56(13):113-119. LIU J, WANG X, WANG H Q. LSTM based sentiment analysis method for Chinese Weibo[J]. Computer Engineering and Applications, 2020, 56(13):113-119. (in Chinese) [13] DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2014:49-54. [14] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4:aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, USA:Association for Computational Linguistics, 2014:27-35. [15] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12:aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg, USA:Association for Computational Linguistics, 2015:486-495. [16] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5:aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. San Diego, USA:[s.n.],2016:19-30. [17] TANG D Y, QIN B, FENG X C, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers. Osaka, Japan:[s. n.], 2016:3298-3307. [18] CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2017:452-461. [19] HUANG B X, OU Y L, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]//Proceedings of International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Washington D. C., USA:IEEE Press, 2018:197-206. [20] MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia:International Joint Conferences on Artificial Intelligence Organization, 2017:4068-4074. [21] CHEN C H, TENG Z Y, ZHANG Y. Inducing target-specific latent structures for aspect sentiment classification[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2020:5596-5607. |