[1] |
YANG Aiping,TIAN Yuzhen,HE Yuqing,et al.Image denoising based on improved K-SVD and non-local regularization[J].Computer Engineering,2015,41(5):249-253.(in Chinese)杨爱萍,田玉针,何宇清,等.基于改进K-SVD和非局部正则化的图像去噪[J].计算机工程,2015,41(5):249-253.
|
[2] |
JAIN P,TYAGI V.LAPB:locally adaptive patch-based wavelet domain edge-preserving image denoising[J].Information Sciences,2015,294:164-181.
|
[3] |
QIAO Tong,REN Jinchang,WANG Zheng,et al.Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(1):119-133.
|
[4] |
DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on image processing,2007,16(8):2080-2095.
|
[5] |
CUI Jinge,CHEN Bingquan,XU Qing.Image denoising algorithm based on dual-tree CWT and adaptive bilateral filtering[J].Computer Engineering and Applications,2018,54(18):223-228.(in Chinese)崔金鸽,陈炳权,徐庆.基于Dual-Tree CWT和自适应双边滤波器的图像去噪算法[J].计算机工程与应用,2018,54(18):223-228.
|
[6] |
GUPTA P,MOORTHY A K,SOUNDARARAJAN R,et al.Generalized Gaussian scale mixtures:a model for wavelet coefficients of natural images[J].Signal Processing:Image Communication,2018,66:87-94.
|
[7] |
XIAO Jinsheng,GAO Wei,PENG Hong,et al.Detail enhancement for image super-resolution algorithm based on SVD and local self-similarity[J].Chinese Journal of Computers,2016,39(7):1393-1406.(in Chinese)肖进胜,高威,彭红,等.基于局部自相似性和奇异值分解的超采样图像细节增强[J].计算机学报,2016,39(7):1393-1406.
|
[8] |
LEBRUN M,BUADES A,MOREL J M.A nonlocal Bayesian image denoising algorithm[J].SIAM Journal on Imaging Sciences,2013,6(3):1665-1688.
|
[9] |
GU Shuhang,ZHANG Lei,ZUO Wangmeng,et al.Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:2862-2869.
|
[10] |
XU Jun,ZHANG Lei,ZUO Wangmeng,et al.Patch group based nonlocal self-similarity prior learning for image denoising[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Computer Society,2015:244-252.
|
[11] |
CHEN Fei,ZHANG Lei,YU Huimin.External patch prior guided internal clustering for image denoising[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Computer Society,2015:603-611.
|
[12] |
ZORAN D,WEISS Y.From learning models of natural image patches to whole image restoration[C]//Proceedings of 2011 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2011:479-486.
|
[13] |
XU J,ZHANG L,ZHANG D.External prior guided internal prior learning for real-world noisy image denoising[J].IEEE Transactions on Image Processing,2018,27(6):2996-3010.
|
[14] |
LUO E,STANLEY H C,TRUONG Q N.Adaptive image denoising by targeted databases[J].IEEE Transactions on Image Processing,2015,24(7):2167-2181.
|
[15] |
MAIRAL J,BACH F,PONCE J,et al.Non-local sparse models for image restoration[C]//Proceedings of 2009 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2009:2272-2279.
|
[16] |
ULYANOV D,VEDALDI A,LEMPITSKY V.Deep image prior[C]//Proceeding of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Computer Society,2018:9446-9454.
|
[17] |
SCHMIDT U,ROTH S.Shrinkage fields for effective image restoration[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:2774-2781.
|
[18] |
CHEN Y,YU W,POCK T.On learning optimized reaction diffusion processes for effective image restora-tion[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Computer Society,2015:5261-5269.
|
[19] |
MULLER P,QUINTANA F A,JARA A,et al.Bayesian nonparametric data analysis[M].Berlin,Germany:Springer,2015.
|
[20] |
PRABHAKARAN S,AZIZI E,CARR A,et al.Dirichlet process mixture model for correcting technical variation in single-cell gene expression data[C]//Proceedings of International Conference on Machine Learning.Washington D.C.,USA:International Machine Learning Society,2016:1070-1079.
|
[21] |
BLACKWELL D,MACQUEEN J B.Ferguson distributions via Pólya urn schemes[J].The Annals of Statistics,1973,1(2):353-355.
|
[22] |
ZHANG Xinhua.A very gentle note on the construction of dirichlet process[EB/OL].[2019-03-11].http://users.cecs.anu.edu.au/~xzhang/pubDoc/notes/dirichlet_process.pdf.
|
[23] |
SETHURAMAN J.A constructive definition of the Dirichlet Prior[J].Statistica Sinica,1994,4(2):639-650.
|
[24] |
HOSINO T.Two alternative criteria for a split-merge MCMC on dirichlet process mixture models[C]//Proceedings of International Conference on Artificial Neural Networks.Berlin,Germany:Springer,2017:672-679.
|
[25] |
BLEI D M,KUCUKELBIR A,MCAULIFFE J D.Variational inference:a review for statisticians[J].Journal of the American Statistical Association,2017,112(518):859-877.
|
[26] |
HUGHES M C,SUDDERTH E B.Memoized online variational inference for Dirichlet process mixture models[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems.Nevada,USA:Neural Information Processing Systems Foundation,2013:1133-1141.
|
[27] |
HUGHES M,KIM D I,SUDDERTH E.Reliable and scalable variational inference for the hierarchical Dirichlet process[C]//Proceedings of the 18th International Conference on Artificial Intelligence and Statistics.Massachusetts,USA:Microtome Publishing,2015:370-378.
|
[28] |
MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2002:416-423.
|