1 |
WOOSTER M J, ROBERTS G J, GIGLIO L, et al. Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sensing of Environment, 2021, 267, 112694.
doi: 10.1016/j.rse.2021.112694
|
2 |
LI D, WANG M, JIANG J. China's high-resolution optical remote sensing satellites and their mapping applications. Geo-Spatial Information Science, 2021, 24(1): 85- 94.
doi: 10.1080/10095020.2020.1838957
|
3 |
CUI Y, HOU B, WU Q, et al. Remote sensing object tracking with deep reinforcement learning under occlusion. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60(1): 1- 13.
|
4 |
|
5 |
朱辉, 秦品乐. 基于多尺度特征结构的U-Net肺结节检测算法. 计算机工程, 2019, 45(4): 254- 261.
doi: 10.19678/j.issn.1000-3428.0051769
|
|
ZHU H, QIN P L. U-Net pulmonary nodule detection algorithm based on multi-scale feature structure. Computer Engineering, 2019, 45(4): 254- 261.
doi: 10.19678/j.issn.1000-3428.0051769
|
6 |
REN Q, ZHENG Y, SUN P, et al. A robust and accurate end-to-end template matching method based on the siamese network. Geoscience and Remote Sensing Letters, 2021, 19, 1- 5.
|
7 |
ORON S, DEKEL T, XUE T F, et al. Best-buddies similarity-robust template matching using mutual nearest neighbors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8): 1799- 1813.
doi: 10.1109/TPAMI.2017.2737424
|
8 |
王自全, 张永生, 于英, 等. 深度学习背景下视觉显著性物体检测综述. 中国图象图形学报, 2022, 27(7): 2112- 2128.
URL
|
|
WANG Z Q, ZHANG Y S, YU Y, et al. Review of deep learning based salient object detection. Journal of Image and Graphics, 2022, 27(7): 2112- 2128.
URL
|
9 |
SARDAR M S, ALAEIYAN M, FARAHANI M R, et al. Resistance distance in some classes of rooted product graphs obtained by Laplacian generalized inverse method. Journal of Information and Optimization Sciences, 2021, 42(7): 1447- 1467.
doi: 10.1080/02522667.2021.1899210
|
10 |
常洪彬, 李文举, 李文辉. 基于注意力机制的航空图像旋转框目标检测. 吉林大学学报(理学版), 2022, 60(6): 1363- 1369.
URL
|
|
CHANG H B, LI W J, LI W H. Rotated object detection in aerial images based on attention mechanism. Journal of Jilin University(Science Edition), 2022, 60(6): 1363- 1369.
URL
|
11 |
|
12 |
JATMOKO C, SINAGA D, SUGIARTO E, et al. Pattern recognition on vehicle number plates using a fast match algorithm. Journal of Applied Intelligent System, 2021, 6(2): 103- 110.
doi: 10.33633/jais.v6i2.4625
|
13 |
|
14 |
|
15 |
KAT R, JEVNISEK R, AVIDAN S. Matching pixels using co-occurrence statistics[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1751-1759.
|
16 |
|
17 |
ORON S, DEKEL T, XUE T F, et al. Best-buddies similarity-robust template matching using mutual nearest neighbors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8): 1799- 1813.
doi: 10.1109/TPAMI.2017.2737424
|
18 |
李熙莹, 周智豪, 邱铭凯. 基于部件融合特征的车辆重识别算法. 计算机工程, 2019, 45(6): 12- 20.
URL
|
|
LI X Y, ZHOU Z H, QIU M K. Vehicle re-identification algorithm based on component fusion feature. Computer Engineering, 2019, 45(6): 12- 20.
URL
|
19 |
ZHANG L, ZHANG P. Target tracking algorithm for template transformation based on template matching[C]//Proceedings of 2020 IEEE International Conference on Mechatronics and Automation. Washington D. C., USA: IEEE Press, 2020: 1659-1663.
|
20 |
REN Q, ZHENG Y, SUN P, et al. A robust and accurate end-to-end template matching method based on the siamese network. Geoscience and Remote Sensing Letters, 2021, 19, 18- 24.
|
21 |
GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[EB/OL]. [2022-11-05]. https://arxiv.org/abs/1811.12231.pdf.
|
22 |
ZHAO Y, SHI Y, WANG Z. The improved YOLOv5 algorithm and its application in small target detection[C]//Proceedings of International Conference on Intelligent Robotics and Applications. Berlin, Germany: Springer, 2022: 679-688.
|
23 |
|
24 |
QING Y, LIU W, FENG L, et al. Improved YOLO network for free-angle remote sensing target detection. Remote Sensing, 2021, 13(11): 2171- 2183.
|
25 |
CARVALHO T, DE REZENDE E R S, ALVES M T P, et al. Exposing computer generated images by eye's region classification via transfer learning of VGG19 CNN[C]//Proceedings of 2017 IEEE International Conference on Machine Learning and Applications. Washington D. C., USA: IEEE Press, 2017: 866-870.
|