[1] HU Can,FAN Wentao,DU Jixiang,et al.Model-based segmentation of image data using spatially constrained mixture models[J].Neurocomputing,2018,283:214-227. [2] ZHAO Quanhua,SHI Xue,WANG Yu,et al.Remote sensing image segmentation based on spatially constrained Gaussian mixture model with unknown class number[J].Journal on Communications,2017,38(2):34-43.(in Chinese)赵泉华,石雪,王玉,等.可变类空间约束高斯混合模型遥感图像分割[J].通信学报,2017,38(2):34-43. [3] XU Shengjun,HAN Jiuqiang,LIU Guanghui,et al.Image segmentation based on local spatial adaptive Markov random field model[J].Control and Decision,2013,28(6):889-893.(in Chinese)徐胜军,韩九强,刘光辉,等.基于局部空间自适应MRF模型的图像分割[J].控制与决策,2013,28(6):889-893. [4] ZHANG Hui,WEN Tian,ZHENG Yuhui,et al.Two fast and robust modified Gaussian mixture models incorporating local spatial information for image segmentation[J].Signal Processing Systems,2015,81:45-58. [5] SONG Yantao,JI Zexuan,SUN Quansen.Brain MR image segmentation algorithm based on Markov random field with image patch[J].Acta Automatica Sinica,2014(8):1754-1763.(in Chinese)宋艳涛,纪则轩,孙权森.基于图像片马尔科夫随机场的脑MR图像分割算法[J].自动化学报,2014(8):1754-1763. [6] LÜ Miaomiao,SUN Jianming.Moving image target detection based on modified Gaussian mixture model[J].Semiconductor Optoelectronics,2019,40(6):874-878.(in Chinese)吕苗苗,孙建明.基于改进高斯混合模型的运动图像目标检测算法[J].半导体光电,2019,40(6):874-878. [7] JI Zexuan,HUANG Yubo,SUN Quansen,et al.A spatially constrained generative asymmetric Gaussian mixture model for image segmentation[J].Journal of Visual Communication and Image Representation,2016,40:611-626. [8] WANG Quan.HMRF-EM-image:implementation of the Hidden Markov random field model and its expectation-maximization algorithm[EB/OL].[2019-09-10].https://arxiv.org/abs/1207.3510. [9] LIN Wenjie,LI Yu,ZHAO Quanhua.High-resolution remote sensing image segmentation using minimum spanning tree tessellation and RHMRF-FCM algorithm[J].Acta Geodaeticaet Cartographica Sinica,2019,48(1):64-74.(in Chinese)林文杰,李玉,赵泉华.结合MST划分和RHMRF-FCM算法的高分辨率遥感图像分割[J].测绘学报,2019,48(1):64-74. [10] FENG Bao,CHEN Yehang,LIU Zhuangsheng,et al.Segmentation of breast cancer on DCE-MRI images with MRF energy and fuzzy speed function[J].Acta Automatica Sinica,2020,46(6):1188-1199.(in Chinese)冯宝,陈业航,刘壮盛,等.结合MRF能量和模糊速度的乳腺癌图像分割方法[J].自动化学报,2020,46(6):1188-1199. [11] MENG Yuebo,LIU Guanghui,XU Shengjun,et al.Image segmantation method using multi-resolution Markov random field model with edge-preserving[J].Journal of Xi'an Jiaotong University,2019,53(3):1-9.(in Chinese)孟月波,刘光辉,徐胜军,等.一种具有边缘保持的多尺度马尔科夫随机场模型图像分割方法[J].西安交通大学学报,2019,53(3):1-9. [12] SHI Xue,LI Yu,LI Xiaoli,et al.Gaussian mixture model with neighbor relationship for image segmentation and simplified solving method[J].Journal of Image and Graphics,2017,22(12):1758-1768.(in Chinese)石雪,李玉,李晓丽,等.融入邻域作用的高斯混合分割模型及简化求解[J].中国图象图形学报,2017,22(12):1758-1768. [13] XIONG Taisong,ZHANG Lei,ZHANG Yi.Double Gaussian mixture model for image segmentation with spatial relationships[J].Journal of Visual Communication and Image Representation.2016,34:135-145. [14] JI Zexuan,LIU Jinyao,YUAN Hengdong,et al.A rough set bounded spatially constrained asymmetric Gaussian mixture model for image segmentation[J].PLoS One,2017,12(1):697-708. [15] LI S Z.Markov random field modeling in computer vision[EB/OL].[2019-09-10].https://xueshu.baidu.com/usercenter/paper/show?paperid=52f6ec28127160e610a2294729aeefec&site=xueshu_se. [16] WANG Qingping,ZHAO Hongyu,WU Weiwei,et al.An adaptive Bayesian segmentation method fused of local and non-local information[J].Journal of Electronics & Information Technology,2014,36(4):1003-1007.(in Chinese)王青平,赵宏宇,吴微微,等.融合局部和非局部信息的自适应贝叶斯分割方法[J].电子与信息学报,2014,36(4):1003-1007. [17] YU Miao,HU Zhanyi.Higher-order Markov random fields and their applications in scene understanding[J].Acta Automatica Sinica,2015,41(7):1213-1234.(in Chinese)余淼,胡占义.高阶马尔科夫随机场及其在场景理解中的应用[J].自动化学报,2015,41(7):1213-1234. [18] ZHU Feng,LUO Limin,SONG Yuqing,et al.Adaptive spatially neighborhood information Gaussian mixture model for image segmentation[J].Journal of Computer Research and Development,2011,48(11):2000-2007.(in Chinese)朱峰,罗立民,宋余庆,等.基于自适应空间邻域信息高斯混合模型的图像分割[J].计算机研究与发展,2011,48(11):2000-2007. [19] NGUYEN T M,WU Q M J.Fast and robust spatially constrained Gaussian mixture model for image segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology,2013,23(4):621-635. [20] CHELLAPPA R,CHATTERJEE S.Classification of textures using Gaussian Markov random fields[J].IEEE Transaction on Acoustics,Speech,and Signal Processing,1985,33(4):959-963. [21] XU Shengjun,HAN Jiuqiang,ZHAO Liang,et al.Algorithm of minimizing local region energy for image segmentation[J].Journal of Xi'an Jiaotong University,2011,45(8):7-12.(in Chinese)徐胜军,韩九强,赵亮,等.用于图像分割的局部区域能量最小化算法[J].西安交通大学学报,2011,45(8):7-12. [22] FENG Feng,XU Shengjun,MENG Yuebo,et al.Image segmentation based on high-order MRF model with robust local spatial information[C]//Proceedings of 2018 Chinese Automation Congress.Washington D.C.,USA:IEEE Press,2018:1-12. [23] NIKOU C,GALATSANOS N,LIKAS A.A class-adaptive spatially variant mixture model for image segmentation[J].IEEE Transactions on Image Processing,2007,16(4):1121-1130. [24] ARBELAEZ P,FOWLKES C,MARTIN D.The Berkeley segmentation dataset and benchmark[EB/OL].[2019-09-10].https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. [25] UNNIKRISHNAN R,PANTOFARU C,HEBERT M.A measure for objective evaluation of image segmentation algorithms[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2005:34-41. |