1 |
YANG X E, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8232-8241.
|
2 |
YANG X E, YAN J C, LIAO W L, et al. SCRDet++: detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2384- 2399.
doi: 10.1109/TPAMI.2022.3166956
|
3 |
DING J A, XUE N, LONG Y, et al. Learning RoI Transformer for oriented object detection in aerial images[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 2849-2858.
|
4 |
GUAN H Y, YU Y T, LI D L, et al. RoadCapsFPN: capsule feature pyramid network for road extraction from VHR optical remote sensing imagery. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11041- 11051.
doi: 10.1109/TITS.2021.3098855
|
5 |
谢星星, 程塨, 姚艳清, 等. 动态特征融合的遥感图像目标检测. 计算机学报, 2022, 45(4): 735- 747.
|
|
XIE X X, CHENG G, YAO Y Q, et al. Dynamic feature fusion for object detection in remote sensing images. Chinese Journal of Computers, 2022, 45(4): 735- 747.
|
6 |
王道累, 杜文斌, 刘易腾, 等. 基于密集连接与特征增强的遥感图像检测. 计算机工程, 2022, 48(6): 251-256, 262.
doi: 10.19678/j.issn.1000-3428.0061482
|
|
WANG D L, DU W B, LIU Y T, et al. Remote sensing images detection based on dense connection and feature enhancement. Computer Engineering, 2022, 48(6): 251-256, 262.
doi: 10.19678/j.issn.1000-3428.0061482
|
7 |
ZHANG C, LAM K M, WANG Q. CoF-Net: a progressive coarse-to-fine framework for object detection in remote-sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1- 17.
|
8 |
|
9 |
LI W T, CHEN Y J, HU K X, et al. Oriented RepPoints for aerial object detection[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 1829-1838.
|
10 |
CHEN H, QI Z P, SHI Z W. Remote sensing image change detection with Transformers. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1- 14.
|
11 |
LIU X L, MA S P, HE L Y, et al. Hybrid network model: TransConvNet for oriented object detection in remote sensing images. Remote Sensing, 2022, 14(9): 2090.
doi: 10.3390/rs14092090
|
12 |
|
13 |
DAI Y N, YU J Y, ZHANG D A, et al. RODFormer: high-precision design for rotating object detection with Transformers. Sensors, 2022, 22(7): 2633.
doi: 10.3390/s22072633
|
14 |
LI Q Y, CHEN Y S, ZENG Y. Transformer with transfer CNN for remote-sensing-image object detection. Remote Sensing, 2022, 14(4): 984.
doi: 10.3390/rs14040984
|
15 |
ZHENG Y B, SUN P, ZHOU Z T, et al. ADT-det: adaptive dynamic refined single-stage Transformer detector for arbitrary-oriented object detection in satellite optical imagery. Remote Sensing, 2021, 13(13): 2623.
doi: 10.3390/rs13132623
|
16 |
LIU Z, LIN Y T, CAO Y E, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
17 |
|
18 |
ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8514-8523.
|
19 |
HOU L P, LU K, XUE J A. Refined one-stage oriented object detection method for remote sensing images. IEEE Transactions on Image Processing, 2022, 31, 1545- 1558.
doi: 10.1109/TIP.2022.3143690
|
20 |
ZHENG W, TANG W L, CHEN S J, et al. CIA-SSD: confident IoU-aware single-stage object detector from point cloud[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 3555-3562.
|
21 |
XIA G S, BAI X A, DING J A, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3974-3983.
|
22 |
PADILLA R, NETTO S L, DA SILVA E A B. A survey on performance metrics for object-detection algorithms[C]//Proceedings of 2020 International Conference on Systems, Signals and Image Processing. Washington D. C., USA: IEEE Press, 2020: 237-242.
|
23 |
CHICCO D, JURMAN G. The advantages of the Matthews Correlation Coefficient(MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 2020, 21(1): 6.
doi: 10.1186/s12864-019-6413-7
|
24 |
|
25 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
26 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
27 |
YANG X E, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 3163-3171.
|
28 |
XU Y C, FU M T, WANG Q M, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452- 1459.
doi: 10.1109/TPAMI.2020.2974745
|
29 |
|
30 |
WANG J W, DING J A, GUO H W, et al. Mask OBB: a semantic attention-based mask oriented bounding box representation for multi-category object detection in aerial images. Remote Sensing, 2019, 11(24): 2930.
doi: 10.3390/rs11242930
|