1 |
CHENG J P, LAPATA M. Neural summarization by extracting sentences and words[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2016: 484-494.
|
2 |
ZHOU Q Y, YANG N, WEI F R, et al. Neural document summarization by jointly learning to score and select sentences[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2018: 654-663.
|
3 |
NARAYAN S, COHEN S B, LAPATA M. Ranking sentences for extractive summarization with reinforcement learning[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2018: 1747-1759.
|
4 |
ERKAN G, RADEV D R. LexRank: graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 2004, 22, 457- 479.
doi: 10.1613/jair.1523
|
5 |
YASUNAGA M, ZHANG R, MEELU K, et al. Graph-based neural multi-document summarization[C]//Proceedings of the 21st Conference on Computational Natural Language Learning. [S. l. ]: Association for Computational Linguistics, 2017: 452-462.
|
6 |
WANG D Q, LIU P F, ZHENG Y N, et al. Heterogeneous graph neural networks for extractive document summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2020: 6209-6219.
|
7 |
MANN W C, THOMPSON S A. Rhetorical structure theory: toward a functional theory of text organization. Text-Interdisciplinary Journal for the Study of Discourse, 1988, 8(3): 243- 281.
|
8 |
ZHOU Q Y, WEI F R, ZHOU M. At which level should we extract?an empirical analysis on extractive document summarization[C]//Proceedings of the 28th International Conference on Computational Linguistics. Washington D. C., USA: IEEE Press, 2020: 5617-5628.
|
9 |
XU J C, GAN Z, CHENG Y, et al. Discourse-aware neural extractive text summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2020: 5021-5031.
|
10 |
ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications. AI Open, 2020, 1, 57- 81.
doi: 10.1016/j.aiopen.2021.01.001
|
11 |
NALLAPATI R, ZHOU B W, DOS SANTOS C, et al. Abstractive text summarization using sequence-to-sequence RNNs and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. [S. l. ]: Association for Computational Linguistics, 2016: 280-290.
|
12 |
|
13 |
WAN X J. An exploration of document impact on graph-based multi-document summarization[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2008: 755-762.
|
14 |
YIN Y J, SONG L F, SU J S, et al. Graph-based neural sentence ordering[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2019: 5387-5393.
|
15 |
王青松, 张衡, 李菲. 基于文本多维度特征的自动摘要生成方法. 计算机工程, 2020, 46(9): 110- 116.
URL
|
|
WANG Q S, ZHANG H, LI F. Automatic summary generation method based on multidimensional text feature. Computer Engineering, 2020, 46(9): 110- 116.
URL
|
16 |
杨朝举, 葛唯益, 王羽, 等. 基于关键词密度的多文档抽取式摘要算法. 指挥信息系统与技术, 2021, 12(5): 48- 53.
URL
|
|
YANG C J, GE W Y, WANG Y, et al. Multi-document extractive summarization algorithm based on keyword density. Command Information System and Technology, 2021, 12(5): 48- 53.
URL
|
17 |
田媛, 郝文宁, 陈刚, 等. 基于多粒度语义交互的抽取式多文档摘要. 计算机系统应用, 2022, 31(7): 186- 193.
URL
|
|
TIAN Y, HAO W N, CHEN G, et al. Extractive multi-document summarization based on multi-granularity semantic interaction. Computer Systems & Applications, 2022, 31(7): 186- 193.
URL
|
18 |
蒋亚芳, 严馨, 徐广义, 等. 融合多信息句子图模型的多文档摘要抽取. 计算机工程与科学, 2020, 42(3): 535- 542.
doi: 10.3969/j.issn.1007-130X.2020.03.021
|
|
JIANG Y F, YAN X, XU G Y, et al. Multi-document summarization extraction based on multi-informati on sentence graph model. Computer Engineering and Science, 2020, 42(3): 535- 542.
doi: 10.3969/j.issn.1007-130X.2020.03.021
|
19 |
明拓思宇, 陈鸿昶, 黄瑞阳, 等. 基于加权AMR图的语义子图预测摘要算法. 计算机工程, 2018, 44(10): 292-297, 302.
URL
|
|
MING T S Y, CHEN H C, HUANG R Y, et al. Semantic subgraph predictive summary algorithm based on weighted AMR graph. Computer Engineering, 2018, 44(10): 292-297, 302.
URL
|
20 |
ZHONG M, LIU P F, CHEN Y R, et al. Extractive summarization as text matching[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2020: 6197-6208.
|
21 |
JIA R P, CAO Y N, TANG H Z, et al. Neural extractive summarization with hierarchical attentive heterogeneous graph network[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2020: 3622-3631.
|
22 |
BAE S, KIM T, KIM J, et al. Summary level training of sentence rewriting for abstractive summarization[C]//Proceedings of the 2nd Workshop on New Frontiers in Summarization. [S. l. ]: Association for Computational Linguistics, 2019: 10-20.
|
23 |
DONG Y, LI Z C, REZAGHOLIZADEH M, et al. EditNTS: an neural programmer-interpreter model for sentence simplification through explicit editing[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2019: 3393-3402.
|
24 |
XU J C, DURRETT G. Neural extractive text summarization with syntactic compression[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2019: 3292-3303.
|
25 |
WANG Y Z, LI S J, YANG J F. Toward fast and accurate neural discourse segmentation[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2018: 962-967.
|
26 |
JI Y F, EISENSTEIN J. Representation learning for text-level discourse parsing[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2014: 13-24.
|
27 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278- 2324.
doi: 10.1109/5.726791
|
28 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
29 |
FABBRI A, LI I, SHE T W, et al. Multi-news: a large-scale multi-document summarization dataset and abstractive hierarchical model[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2019: 1074-1084.
|
30 |
MIHALCEA R, TARAU P. TextRank: bringing order into text[C]//Proceedings of 2004 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2004: 404-411.
|
31 |
CARBONELL J, GOLDSTEIN J. The use of MMR, diversity-based reranking for reordering documents and producing summaries[C]//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 1998: 335-336.
|
32 |
SEE A, LIU P J, MANNING C D. Get to the point: summarization with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2017: 1073-1083.
|
33 |
GEHRMANN S, DENG Y T, RUSH A. Bottom-up abstractive summarization[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2018: 4098-4109.
|
34 |
LI W, XIAO X Y, LIU J C, et al. Leveraging graph to improve abstractive multi-document summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2020: 6232-6243.
|
35 |
|