[1] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37. [2] 邢玉莹, 夏鸿斌,王涵. 缺失数据建模的改进型ALS在线推荐算法[J]. 计算机工程, 2018, 44(8):212-217, 223. XING Y Y, XIA H B, WANG H. Improved ALS online recommendation algorithm with missing data modeling[J]. Computer Engineering, 2018, 44(8):212-217, 223.(in Chinese) [3] 纪成君, 李蕊,王仕勤. 缺失数据下基于SVDIFC的协同过滤推荐算法[J]. 计算机应用研究, 2021, 38(10):2994-2999. JI C J, LI R, WANG S Q. Collaborative filtering recommendation algorithm based on SVDIFC under missing data[J]. Application Research of Computers, 2021, 38(10):2994-2999.(in Chinese) [4] 周飞燕, 金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251. ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.(in Chinese) [5] 王永贵, 尚庚. 融合注意力机制的深度协同过滤推荐算法[J]. 计算机工程与应用, 2019, 55(13):8-14. WANG Y G, SHANG G. Deep collaborative filtering recommendation with attention mechanism[J]. Computer Engineering and Applications, 2019, 55(13):8-14.(in Chinese) [6] 吴静, 谢辉,姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10):2249-2263. WU J, XIE H, JIANG H W. Survey of graph neural network in recommendation system[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10):2249-2263.(in Chinese) [7] LEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022. [8] 王雅静, 郭强,邓春燕,等. 基于LDA主题模型的用户特征预测研究[J]. 复杂系统与复杂性科学, 2020, 17(4):9-15. WANG Y J, GUO Q, DENG C Y, et al. Research on user traits predicting based on LDA topic model[J]. Complex Systems and Complexity Science, 2020, 17(4):9-15.(in Chinese) [9] 颜端武, 梅喜瑞,杨雄飞,等. 基于主题模型和词向量融合的微博文本主题聚类研究[J]. 现代情报, 2021, 41(10):67-74. YAN D W, MEI X R, YANG X F, et al. Research on microblog text topic clustering based on the fusion of topic model and word embedding[J]. Journal of Modern Information, 2021, 41(10):67-74.(in Chinese) [10] 穆晓霞, 董星辉,柴旭清,等. 融合LDA主题模型和支持向量机的商品个性化推荐方法[J]. 郑州大学学报(理学版), 2022, 54(3):34-39. MU X X, DONG X H, CHAI X Q, et al. Commodity personalized recommendation method integrating LDA topic model and support vector machine[J]. Journal of Zhengzhou University (Natural Science Edition), 2022, 54(3):34-39.(in Chinese) [11] 田保军, 刘爽,房建东. 融合主题信息和卷积神经网络的混合推荐算法[J]. 计算机应用, 2020, 40(7):1901-1907. TIAN B J, LIU S, FANG J D. Hybrid recommendation algorithm by fusion of topic information and convolution neural network[J]. Journal of Computer Applications, 2020, 40(7):1901-1907.(in Chinese) [12] 张永宾, 赵金楼. 融合LDA与注意力的网络信息个性化推荐方法[J]. 计算机仿真, 2022, 39(12):528-532. ZHANG Y B, ZHAO J L. Personalized recommendation method of network information integrating LDA and attention[J]. Computer Simulation, 2022, 39(12):528-532.(in Chinese) [13] 宋晓丽, 贺龙威. 基于改进自编码器的在线课程推荐模型[J]. 计算机系统应用, 2022, 31(3):288-293. SONG X L, HE L W. Online course recommendation model based on enhanced auto-encoder[J]. Computer Systems & Applications, 2022, 31(3):288-293.(in Chinese) [14] 子健,李俊,岳兆娟,等.基于自编码器与属性信息的混合推荐模型[J].数据与计算发展前沿,2021,3(3):148-155. CHEN Z J, LI J, YUE Z J, et al. Hybrid recommendation model based on autoencoder and attribute information[J]. Frontiers of Data & Computer, 2021,3(3):148-155.(in Chinese) [15] 周传华, 于猜,鲁勇. 融合评分矩阵和评论文本的深度神经网络推荐模型[J]. 计算机应用研究, 2021, 38(4):1058-1061, 1068. ZHOU C H, YU C, LU Y. Recommendation model of deep neural network combining rating matrix and review text[J]. Application Research of Computers, 2021, 38(4):1058-1061, 1068.(in Chinese) [16] 任胜兰, 郭慧娟,黄文豪,等. 基于注意力机制交互卷积神经网络的推荐方法[J]. 计算机科学, 2022, 49(10):126-131. REN S L, GUO H J, HUANG W H, et al. Recommendation method based on attention mechanism interactive convolutional neural network[J]. Computer Science, 2022, 49(10):126-131.(in Chinese) [17] 刘羽茜, 刘玉奇,张宗霖,等. 注入注意力机制的深度特征融合新闻推荐模型[J]. 计算机应用, 2022, 42(2):426-432. LIU Y Q, LIU Y Q, ZHANG Z L, et al. News recommendation model with deep feature fusion injecting attention mechanism[J]. Journal of Computer Applications, 2022, 42(2):426-432.(in Chinese) [18] 刘振鹏, 尹文召,王文胜,等. HRS-DC:基于深度学习的混合推荐模型[J]. 计算机工程与应用, 2020, 56(14):169-175. LIU Z P, YIN W Z, WANG W S, et al. HRS-DC:hybrid recommendation model based on deep learning[J]. Computer Engineering and Applications, 2020, 56(14):169-175.(in Chinese) [19] 陈彬, 张荣梅,张琦. DCFM:基于深度学习的混合推荐模型[J]. 计算机工程与应用, 2021, 57(3):150-155. CHEN B, ZHANG R M, ZHANG Q. DCFM:hybrid recommendation model based on deep learning[J]. Computer Engineering and Applications, 2021, 57(3):150-155.(in Chinese) [20] 陈蕾, 刘铭. 引入用户关注的图推荐模型的研究[J]. 系统工程, 2019, 37(2):21-29. CHEN L, LIU M. The research on graph based recommendation model importing users attention[J]. Systems Engineering, 2019, 37(2):21-29.(in Chinese) [21] 党伟超, 姚志宇,白尚旺,等. 基于图模型和注意力模型的会话推荐方法[J]. 计算机应用, 2022, 42(11):3610-3616. DANG W C, YAO Z Y, BAI S W, et al. Session recommendation method based on graph model and attention model[J]. Journal of Computer Applications, 2022, 42(11):3610-3616.(in Chinese) [22] 邹程辉, 李卫疆. 融合知识图谱和评论文本的个性化推荐模型[J]. 计算机工程与科学, 2023, 45(1):181-190. ZOU C H, LI W J. A personalized recommendation model integrating knowledge graph and comment text[J]. Computer Engineering & Science, 2023, 45(1):181-190.(in Chinese) [23] 张若一, 金柳,马慧芳,等. 融合相似用户影响效应的知识图谱推荐模型[J]. 计算机工程与科学, 2023, 45(3):520-527. ZHANG R Y, JIN L, MA H F, et al. A knowledge graph recommendation model incorporating the influence effect of similar users[J]. Computer Engineering & Science, 2023, 45(3):520-527.(in Chinese) [24] INGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL].[2023-07-05]. https://www.xueshufan.com/publication/2964121744. [25] GUO H F, TANG R M, YE Y M, et al. DeepFM:a factorization-machine based neural network for CTR prediction[EB/OL].[2023-07-05]. https://arxiv.org/pdf/1703.04247.pdf. [26] KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York,USA:ACM Press,2016:11-23. [27] ZHENG L, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York,USA:ACM Press,2017:425-434. [28] CHEN C, ZHANG M, LIU Y Q, et al. Neural attentional rating regression with review-level explanations[C]//Proceedings of 2018 World Wide Web Conference. New York,USA:ACM Press,2018:1583-1592. [29] 冯兴杰, 崔桂颖. 基于交互注意力的可解释性推荐方法[J]. 计算机应用与软件, 2022, 39(10):292-298, 328. FENG X J, CUI G Y. An interpretable recommendation based on interactive attention[J]. Computer Applications and Software, 2022, 39(10):292-298, 328.(in Chinese) [30] MA H, LIU Q. In-depth recommendation model based on self-attention factorization[J]. KSII Transactions on Internet and Information Systems, 2023, 17(3):121-132. |