1 |
李可欣, 王兴伟, 易波, 等. 智能软件定义网络. 软件学报, 2021, 32 (1): 118- 136.
doi: 10.13328/j.cnki.jos.006120
|
|
LI K X, WANG X W, YI B, et al. Intelligent software defined networking. Journal of Software, 2021, 32 (1): 118- 136.
doi: 10.13328/j.cnki.jos.006120
|
2 |
徐玉华, 孙知信. 软件定义网络中的异常流量检测研究进展. 软件学报, 2020, 31 (1): 183- 207.
doi: 10.13328/j.cnki.jos.005879
|
|
XU Y H, SUN Z X. Research development of abnormal traffic detection in software defined networking. Journal of Software, 2020, 31 (1): 183- 207.
doi: 10.13328/j.cnki.jos.005879
|
3 |
STUDER A, PERRIG A. The coremelt attack[C]//Proceedings of European Symposium on Research in Computer Security. Berlin, Germany: Springer, 2009: 37-52.
|
4 |
KANG M S, LEE S B, GLIGOR V D. The Crossfire attack[C]//Proceedings of the IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2013: 127-141.
|
5 |
|
6 |
XING J C, CAI J J, ZHOU B Y, et al. A deep ConvNet-based countermeasure to mitigate link flooding attacks using software-defined networks[C]//Proceedings of the IEEE Symposium on Computers and Communications. Washington D. C., USA: IEEE Press, 2019: 1-6.
|
7 |
RAFIQUE W, HE X, LIU Z F, et al. CFADefense: a security solution to detect and mitigate crossfire attacks in software-defined IoT-edge infrastructure[C]//Proceedings of the 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems(HPCC/SmartCity/DSS). Washington D. C., USA: IEEE Press, 2019: 500-509.
|
8 |
KANG M S, GLIGOR V D. Routing bottlenecks in the Internet: causes, exploits, and countermeasures[C]//Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2014: 321-333.
|
9 |
NAKAHARA M, KAMIYAMA N. Detecting crossfire-attack hosts in search phase[C]//Proceedings of the 23rd Asia-Pacific Network Operations and Management Symposium(APNOMS). Washington D. C., USA: IEEE Press, 2022: 1-4.
|
10 |
WANG J, WEN R, LI J Q, et al. Detecting and mitigating target link-flooding attacks using SDN. IEEE Transactions on Dependable and Secure Computing, 2019, 16 (6): 944- 956.
doi: 10.1109/TDSC.2018.2822275
|
11 |
KANG M S, GLIGOR V D, SEKAR V. SPIFFY: inducing cost-detectability tradeoffs for persistent link-flooding attacks[C]//Proceedings of 2016 Network and Distributed System Security Symposium. Reston, USA: Internet Society, 2016: 53-55.
|
12 |
WANG L, LI Q, JIANG Y, et al. Woodpecker: detecting and mitigating link-flooding attacks via SDN. Computer Networks, 2018, 147, 1- 13.
doi: 10.1016/j.comnet.2018.09.021
|
13 |
ZHOU B Y, PAN G N, WU C M, et al. Multi-variant network address hopping to defend stealthy crossfire attack. Science China Information Sciences, 2020, 63 (6): 169301.
doi: 10.1007/s11432-019-9921-7
|
14 |
AYDEGER A, MANSHAEI M H, RAHMAN M A, et al. Strategic defense against stealthy link flooding attacks: a signaling game approach. IEEE Transactions on Network Science and Engineering, 2021, 8 (1): 751- 764.
doi: 10.1109/TNSE.2021.3052090
|
15 |
HYDER M F, FATIMA T. Towards crossfire distributed denial of service attack protection using intent-based moving target defense over software-defined networking. IEEE Access, 2021, 9, 112792- 112804.
doi: 10.1109/ACCESS.2021.3103845
|
16 |
KIM J, SHIN S. Software-defined HoneyNet: towards mitigating link flooding attacks[C]//Proceedings of the 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops(DSN-W). Washington D. C., USA: IEEE Press, 2017: 99-100.
|
17 |
KIM J, NAM J, LEE S, et al. BottleNet: hiding network bottlenecks using SDN-based topology deception. IEEE Transactions on Information Forensics and Security, 2021, 16, 3138- 3153.
doi: 10.1109/TIFS.2021.3075845
|
18 |
KIM J, MARIN E, CONTI M, et al. EqualNet: a secure and practical defense for long-term network topology obfuscation[C]//Proceedings of 2022 Network and Distributed System Security Symposium. Reston, USA: Internet Society, 2022: 24-28.
|
19 |
LIASKOS C, IOANNIDIS S. Network topology effects on the detectability of crossfire attacks. IEEE Transactions on Information Forensics and Security, 2018, 13 (7): 1682- 1695.
doi: 10.1109/TIFS.2018.2799425
|
20 |
MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow. ACM SIGCOMM Computer Communication Review, 2008, 38 (2): 69- 74.
doi: 10.1145/1355734.1355746
|
21 |
穆俊芳, 郑文萍, 王杰, 等. 基于重连机制的复杂网络鲁棒性分析. 计算机科学, 2021, 48 (7): 130- 136.
URL
|
|
MU J F, ZHENG W P, WANG J, et al. Robustness analysis of complex network based on rewiring mechanism. Computer Science, 2021, 48 (7): 130- 136.
URL
|
22 |
周桐庆, 蔡志平, 夏竟, 等. 基于软件定义网络的流量工程. 软件学报, 2016, 27 (2): 394- 417.
doi: 10.13328/j.cnki.jos.004935
|
|
ZHOU T Q, CAI Z P, XIA J, et al. Traffic engineering for software defined networks. Journal of Software, 2016, 27 (2): 394- 417.
doi: 10.13328/j.cnki.jos.004935
|
23 |
FREEMAN L C. A set of measures of centrality based on betweenness. Sociometry, 1977, 40 (1): 35.
doi: 10.2307/3033543
|
24 |
MARTEAU P F. Random partitioning forest for point-wise and collective anomaly detection—application to network intrusion detection. IEEE Transactions on Information Forensics and Security, 2021, 16, 2157- 2172.
doi: 10.1109/TIFS.2021.3050605
|
25 |
MISHRA A K, PALIWAL S. Mitigating cyber threats through integration of feature selection and stacking ensemble learning: the LGBM and random forest intrusion detection perspective. Cluster Computing, 2023, 26 (4): 2339- 2350.
doi: 10.1007/s10586-022-03735-8
|
26 |
CHOUDHURY S, BHOWAL A. Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection[C]//Proceedings of the International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials(ICSTM). Washington D. C., USA: IEEE Press, 2015: 89-95.
|
27 |
ANBAR M, ABDULLAH R, HASBULLAH I H, et al. Comparative performance analysis of classification algorithms for intrusion detection system[C]//Proceedings of the 14th Annual Conference on Privacy, Security and Trust(PST). Washington D. C., USA: IEEE Press, 2016: 282-288.
|
28 |
KNIGHT S, NGUYEN H X, FALKNER N, et al. The Internet topology zoo. IEEE Journal on Selected Areas in Communications, 2011, 29 (9): 1765- 1775.
doi: 10.1109/JSAC.2011.111002
|
29 |
GARCÍA S, GRILL M, STIBOREK J, et al. An empirical comparison of botnet detection methods. Computers & Security, 2014, 45, 100- 123.
doi: 10.1016/j.cose.2014.05.011
|