[1] PAXSON V, STANIFORD S.The cooperative associate for Internet data analysis[EB/OL].[2020-08-11].http://www.caida.org/data. [2] 崔勇, 吴建平, 徐恪.互联网络服务质量路由算法研究综述[J].软件学报, 2002, 13(11):2065-2075. CUI Y, WU J P, XU K.A survey on quality-of-service routing algorithms for the Internet[J].Journal of Software, 2002, 13(11):2065-2075.(in Chinese) [3] HUANG W H, SONG G J, HONG H K, et al.Deep architecture for traffic flow prediction:deep belief networks with multitask learning[J].IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5):2191-2201. [4] KATO N, FADLULLAH Z M, MAO B, et al.The deep learning vision for hetero-geneous network traffic control:proposal, challenges, and future perspective[J].IEEE Wireless Communications, 2017, 24(3):146-153. [5] 刘佳美, 徐巧枝.基于机器学习的SDN网络流量预测与部署策略[J].计算机工程, 2020, 46(10):223-230. LIU J M, XU Q Z.Network traffic prediction and deployment strategy based on machine learning for SDN[J].Computer Engineering, 2020, 46(10):223-230.(in Chinese) [6] MAO B M, FADLULLAH Z M, TANG F X, et al.Routing or computing?The paradigm shift towards intelligent computer network packet transmission based on deep learning[J].IEEE Transactions on Computers, 2017, 66(11):1946-1960. [7] ERMAN J, ARLITT M, MAHANTI A.Traffic classification using clustering algorithms[C]//Proceedings of 2006 SIGCOMM Workshop on Mining Network Data.New York, USA:ACM Press, 2006:281-286. [8] LIU Y Q, LI W, LI Y C.Network traffic classification using k-means clustering[C]//Proceedings of International Multi-Symposiums on Computer and Computational Sciences.Washington D.C., USA:IEEE Press, 2007:360-365. [9] YAN R Y, LIU R.Principal component analysis-based network traffic classification[J].Journal of Computers, 2014, 9(5):1234-1240. [10] BOYAN J A, LITTMAN M L.Packet routing in dynamically changing networks:a reinforcement learning approach[C]//Proceedings of Advances in Neural Information Processing Systems.San Francisco, USA:Morgan Kaufmann Press, 1994:671-678. [11] XU Z Y, TANG J, MENG J S, et al.Experience-driven networking:a deep reinforcement learning based approach[C]//Proceedings of IEEE Conference on Computer Communications.Hawaii, USA:IEEE Press, 2018:1871-1879. [12] SUN P H, HU Y X, LAN J L, et al.TIDE:timerelevant deep reinforcement learning for routing optimization[J].Future Generation Computer Systems, 2019, 11(3):134-144. [13] SUN P H, LI J F, GUO Z H, et al.SINET:enabling scalable network routing with deep reinforcement learning on partial nodes[C]//Proceedings of SIGCOMMʼ19.Beijing, China:[s.n.], 2019:88-89. [14] RONALD J.Simple statistical gradient-following algorithms for connectionist reinforcement learning[J].Machine Learning, 1992, 3(4):229-256. [15] GILMER J, SCHOENHOLZ S S, RILEY O F, et al.Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning.New York, USA:ACM Press, 2017:1263-1272. [16] BROCKMAN G, CHEUNG V, PETTERSSON L, et al.OpenAI GYM[EB/OL].[2020-08-10].https://arxiv:arxiv:1606.01540. [17] BOTTOU L.Large-scale machine learning with stochastic gradient descent[C]//Proceedings of COMPSTATʼ10.Berlin, Germany:Springer, 2010:177-186. [18] SIMON K, HUNG X, NICKOLAS F, et al.The Internet topology zoo[J].IEEE Journal on Selected Areas in Communications, 2011, 29(9):1765-1775. [19] LAKHINA A, PAPAGIANNAKI K, CROVELLA M, et al.Structural analysis of network traffic flows[C]//Proceedings of Joint International Conference on Measurement and Modeling of Computer Systems.New York, USA:ACM Press, 2004:61-72. [20] GUO Z H.Joint switch upgrade and controller deployment in hybrid software-defined networks[J].IEEE Journal on Selected Areas in Communications, 2019, 37(5):1012-1028. [21] GUO Z H.RetroFlow:maintaining control resiliency and flow programmability for software-defined WANs[C]//Proceedings of the 27th IEEE/ACM International Symposium on Quality of Service.Phoenix, USA:ACM Press, 2019:1-14. |