1 |
LEON F, GAVRILESCU M. A review of tracking and trajectory prediction methods for autonomous driving. Mathematics, 2021, 9 (6): 660.
doi: 10.3390/math9060660
|
2 |
李雪松, 张锲石, 宋呈群, 等. 自动驾驶场景下的轨迹预测技术综述. 计算机工程, 2023, 49 (5): 1- 11.
URL
|
|
LI X S, ZHANG Q S, SONG C Q, et al. Review of trajectory prediction technology in autonomous driving scenes. Computer Engineering, 2023, 49 (5): 1- 11.
URL
|
3 |
DAI S Z, LI Z H, LI L, et al. A flexible and explainable vehicle motion prediction and inference framework combining semi-supervised AOG and ST-LSTM. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (2): 840- 860.
doi: 10.1109/TITS.2020.3016304
|
4 |
XUE H, HUYNH D Q, REYNOLDS M. PoPPL: pedestrian trajectory prediction by LSTM with automatic route class clustering. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (1): 77- 90.
doi: 10.1109/TNNLS.2020.2975837
|
5 |
XIE L, WEI Z L, DING D L, et al. Long and short term maneuver trajectory prediction of UCAV based on deep learning. IEEE Access, 2021, 9, 32321- 32340.
doi: 10.1109/ACCESS.2021.3060783
|
6 |
ZHONG G, ZHANG H H, ZHOU J Y, et al. Short-term 4D trajectory prediction for UAV based on spatio-temporal trajectory clustering. IEEE Access, 2022, 10, 93362- 93380.
doi: 10.1109/ACCESS.2022.3203428
|
7 |
SHI Z Y, XU M, PAN Q. 4-D flight trajectory prediction with constrained LSTM network. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (11): 7242- 7255.
doi: 10.1109/TITS.2020.3004807
|
8 |
LIU R W, LIANG M H, NIE J T, et al. Deep learning-powered vessel trajectory prediction for improving smart traffic services in maritime Internet of Things. IEEE Transactions on Network Science and Engineering, 2022, 9 (5): 3080- 3094.
doi: 10.1109/TNSE.2022.3140529
|
9 |
ZHAO Z L, EMAMI N, SANTOS H, et al. Reinforced-LSTM trajectory prediction-driven dynamic service migration: a case study. IEEE Transactions on Network Science and Engineering, 2022, 9 (4): 2786- 2802.
doi: 10.1109/TNSE.2022.3169786
|
10 |
ZHANG P, OUYANG W L, ZHANG P F, et al. SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12077-12086.
|
11 |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 961-971.
|
12 |
DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 15489-15498.
|
13 |
谢彬, 张琨, 张云纯, 等. 基于轨迹相似度的移动目标轨迹预测算法. 计算机工程, 2018, 44 (9): 177- 183.
URL
|
|
XIE B, ZHANG K, ZHANG Y C, et al. Trajectory prediction algorithm for mobile target based on trajectory similarity. Computer Engineering, 2018, 44 (9): 177- 183.
URL
|
14 |
葛宇然, 付强. 基于时空联合学习的城市交通流短时预测模型. 计算机工程, 2023, 49 (1): 270- 278.
URL
|
|
GE Y R, FU Q. Short-time prediction model for urban traffic flow based on joint spatio-temporal learning. Computer Engineering, 2023, 49 (1): 270- 278.
URL
|
15 |
刘杭, 殷歆, 陈杰, 等. 基于混合网络模型的多维时间序列预测. 计算机工程, 2023, 49 (1): 121- 129.
URL
|
|
LIU H, YIN X, CHEN J, et al. Multi-dimensional time-series prediction based on hybrid network models. Computer Engineering, 2023, 49 (1): 121- 129.
URL
|
16 |
ZHOU Y T, WU H Y, CHENG H Q, et al. Social graph convolutional LSTM for pedestrian trajectory prediction. IET Intelligent Transport Systems, 2021, 15 (3): 396- 405.
doi: 10.1049/itr2.12033
|
17 |
姚冲, 周晖. 基于时空图的行人多模态轨迹预测方法. 计算机工程与设计, 2022, 43 (10): 2918- 2925.
URL
|
|
YAO C, ZHOU H. Pedestrian multi-modal trajectory prediction method based on spatial-temporal graph. Computer Engineering and Design, 2022, 43 (10): 2918- 2925.
URL
|
18 |
ZHAO D, LI T, ZOU X Y, et al. Multimodal pedestrian trajectory prediction based on relative interactive spatial-temporal graph. IEEE Access, 2022, 10, 88707- 88718.
|
19 |
AMIRIAN J, HAYET J B, PETTRÉ J. Social ways: learning multi-modal distributions of pedestrian trajectories with GANs[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2964-2972.
|
20 |
WANG H J, ZHANG X L, ZHOU L Q, et al. Intersection detection algorithm based on hybrid bounding box for geological modeling with faults. IEEE Access, 2020, 8, 29538- 29546.
|
21 |
LYU N C, WEN J Q, DUAN Z C, et al. Vehicle trajectory prediction and cut-in collision warning model in a connected vehicle environment. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (2): 966- 981.
|
22 |
GAN B Q, DONG Q P. An improved optimal algorithm for collision detection of hybrid hierarchical bounding box. Evolutionary Intelligence, 2022, 15 (4): 2515- 2527.
|
23 |
汤文琳, 谢凯, 文畅, 等. 深度聚类索引下的海量地震数据快速三维可视化. 计算机工程, 2022, 48 (11): 275- 283.
URL
|
|
TANG W L, XIE K, WEN C, et al. Fast 3D visualization of massive seismic data in deep clustering index. Computer Engineering, 2022, 48 (11): 275- 283.
URL
|
24 |
|
|
|
25 |
HOU D W, WANG X D, LIU J C, et al. Research on collision avoidance technology of manipulator based on AABB hierarchical bounding box algorithm[C]//Proceedings of the 5th Asian Conference on Artificial Intelligence Technology. Washington D. C., USA: IEEE Press, 2022: 406-409.
|
26 |
刘创, 梁军. 基于注意力机制的车辆运动轨迹预测. 浙江大学学报(工学版), 2020, 54 (6): 1156- 1163.
URL
|
|
LIU C, LIANG J. Vehicle motion trajectory prediction based on attention mechanism. Journal of Zhejiang University(Engineering Science), 2020, 54 (6): 1156- 1163.
URL
|
27 |
惠学武, 孟祥宇. 融合包围盒智能算法的虚拟场景碰撞检测研究. 计算机仿真, 2021, 38 (7): 209- 213.
URL
|
|
HUI X W, MENG X Y. Virtual scene collision detection based on bounding box intelligent algorithm. Computer Simulation, 2021, 38 (7): 209- 213.
URL
|