1 |
徐庆婷, 洪宇, 潘雨晨, 等. 属性抽取研究综述. 软件学报, 2023, 34 (2): 690- 711.
|
|
XU Q T , HONG Y , PAN Y C , et al. Survey on aspect term extraction. Journal of Software, 2023, 34 (2): 690- 711.
|
2 |
陈壮, 钱铁云, 李万理, 等. 低资源方面级情感分析研究综述. 计算机学报, 2023, 46 (7): 1445- 1472.
doi: 10.11897/SP.J.1016.2023.01445
|
|
CHEN Z , QIAN T Y , LI W L , et al. Low-resource aspect-based sentiment analysis: a survey. Chinese Journal of Computers, 2023, 46 (7): 1445- 1472.
doi: 10.11897/SP.J.1016.2023.01445
|
3 |
WANG W Y , PAN S J . Syntactically meaningful and transferable recursive neural networks for aspect and opinion extraction. Computational Linguistics, 2020, 45 (4): 705- 736.
doi: 10.1162/coli_a_00362
|
4 |
XU H, LIU B, SHU L, et al. BERT post-training for review reading compre-hension and aspect-based sentiment analysis[EB/OL]. [2023-12-18]. https://arxiv.org/abs/1904.02232.
|
5 |
GONG C G, YU J F, XIA R. Unified feature and instance based domain adaptation for aspect-based sentiment analysis[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Philadelphia, USA: ACL Press, 2020: 7035-7045.
|
6 |
CHEN Z, QIAN T Y. Bridge-based active domain adaptation for aspect term extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Philadelphia, USA: ACL Press, 2021: 317-327.
|
7 |
KLEIN A, PEREG O, KORAT D, et al. Opinion-based relational pivoting for cross-domain aspect term extraction[C]//Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis. Philadelphia, USA: ACL Press, 2022: 104-112.
|
8 |
PEREG O, KORAT D, WASSERBLAT M. Syntactically aware cross-domain aspect and opinion terms extraction[C]//Proceedings of the 28th International Conference on Computational Linguistics. [S. l.]: International Committee on Computational Linguistics, 2020: 1772-1777.
|
9 |
QIU G , LIU B , BU J J , et al. Opinion word expansion and target extraction through double propagation. Computational Linguistics, 2011, 37 (1): 9- 27.
doi: 10.1162/coli_a_00034
|
10 |
|
11 |
LIAO M, LI J, ZHANG H S, et al. Coupling global and local context for unsupervised aspect extraction[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Philadelphia, USA: ACL Press, 2019: 4579-4589.
|
12 |
VENUGOPALAN M , GUPTA D . An enhanced guided LDA model augmented with BERT based semantic strength for aspect term extraction in sentiment analysis. Knowledge-Based Systems, 2022, 246, 108668.
doi: 10.1016/j.knosys.2022.108668
|
13 |
PORIA S , CAMBRIA E , GELBUKH A . Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-Based Systems, 2016, 108, 42- 49.
doi: 10.1016/j.knosys.2016.06.009
|
14 |
刘全, 梁斌, 徐进, 等. 一种用于基于方面情感分析的深度分层网络模型. 计算机学报, 2018, 41 (12): 2637- 2652.
doi: 10.11897/SP.J.1016.2018.02637
|
|
LIU Q , LIANG B , XU J , et al. A deep hierarchical neural network model for aspect-based sentiment analysis. Chinese Journal of Computers, 2018, 41 (12): 2637- 2652.
doi: 10.11897/SP.J.1016.2018.02637
|
15 |
|
16 |
DA'U A , SALIM N . Aspect extraction on user textual reviews using multi-channel convolutional neural network. PeerJ Computer Science, 2019 (5): 1- 16.
doi: 10.7717/PEERJ-CS.191
|
17 |
|
18 |
杜成玉, 刘鹏远. 基于螺旋注意力网络的方面级别情感分析模型. 中文信息学报, 2020, 34 (9): 70- 77.
doi: 10.3969/j.issn.1003-0077.2020.09.010
|
|
DU C Y , LIU P Y . Helical attention networks for aspect-level sentiment classification. Journal of Chinese Information Processing, 2020, 34 (9): 70- 77.
doi: 10.3969/j.issn.1003-0077.2020.09.010
|
19 |
ZHANG X, ZHAO J B, LECUN Y, et al. Character-level convolutional networks for text classification[C]//Proceedings of the 29th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 649-657.
|
20 |
WANG W Y, PAN S J. Recursive neural structural correspondence network for cross-domain aspect and opinion co-extraction[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Philadelphia, USA: ACL Press, 2018: 2171-2181.
|
21 |
HOWARD P, MA A, LAL V, et al. Cross-domain aspect extraction using Transformers augmented with knowledge graphs[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2022: 780-790.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
23 |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Philadelphia, USA: ACL Press, 2014: 27-35.
|
24 |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Philadelphia, USA: ACL Press, 2015: 486-495.
|
25 |
LI F T, PAN S J, JIN O, et al. Cross-domain co-extraction of sentiment and topic lexicons[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. New York, USA: ACM Press, 2012: 410-419.
|
26 |
LI Z, LI X, WEI Y, et al. Transferable end-to-end aspect-based sentiment analysis with selective adversarial learning[EB/OL]. [2023-12-18]. https://arxiv.org/abs/1910.14192.
|
27 |
DING Y, YU J F, JIANG J. Recurrent neural networks with auxiliary labels for cross-domain opinion target extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 3436-3442.
|
28 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2023-12-18]. https://arxiv.org/abs/1810.04805.
|
29 |
ZHANG Q X, MA Y, GU M L, et al. End-to-end Chinese dialects identification in short utterances using CNN-BiGRU[C]// Proceedings of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference. Washington D.C., USA: IEEE Press, 2019: 340-344.
|