1 |
ZHANG C M, HE J, SHANG L. An X-ray image classification method with fine-grained features for explainable diagnosis of pneumoconiosis. Personal and Ubiquitous Computing, 2024, 28(2): 403- 415.
doi: 10.1007/s00779-023-01730-3
|
2 |
WANG Y, CUI F T, DING X P, et al. Automated identification of the preclinical stage of coal workers' pneumoconiosis from digital chest radiography using three-stage cascaded deep learning model. Biomedical Signal Processing and Control, 2023, 83, 104607.
doi: 10.1016/j.bspc.2023.104607
|
3 |
王峥, 钱青俊, 张建芳, 等. 计算机辅助诊断在尘肺病诊断中应用价值. 中国职业医学, 2020, 47(4): 428- 431.
URL
|
|
WANG Z, QIAN Q J, ZHANG J F, et al. Application value of computer-aided diagnosis in diagnosing pneumoconiosis. China Occupational Medicine, 2020, 47(4): 428- 431.
URL
|
4 |
ARPIT D, JASTRZEBSKI S, BALLAS N, et al. A closer look at memorization in deep networks[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2017: 233-242.
|
5 |
SONG H, KIM M, PARK D, et al. Learning from noisy labels with deep neural networks: a survey. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 8135- 8153.
doi: 10.1109/TNNLS.2022.3152527
|
6 |
HAN J F, LUO P, WANG X G. Deep self-learning from noisy labels[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 5138-5147.
|
7 |
GOLDBERGER J, BEN-REUVEN E. Training deep neural-networks using a noise adaptation layer[C]//Proceedings of IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2016: 368-367.
|
8 |
YAO Y, LIU T, HAN B, et al. Dual T: reducing estimation error for transition matrix in label-noise learning[C]//Proceedings of NIPS'20. Cambridge, USA: MIT Press, 2020: 7260-7271.
|
9 |
王学刚, 王玉峰. 基于多轮修正噪声标签的神经网络分类框架. 计算机技术与发展, 2023, 33(8): 151- 158.
URL
|
|
WANG X G, WANG Y F. A neural network classification framework based on calibrating noisy labels in multi-round. Computer Technology and Development, 2023, 33(8): 151- 158.
URL
|
10 |
YI L, LIU S, SHE Q, et al. On learning contrastive representations for learning with noisy labels[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 16682-16691.
|
11 |
郭亚庆. 基于噪声特性分析的正则化鲁棒回归建模方法[D]. 太原: 山西大学, 2023.
|
|
GUO Y Q. Regularized robust regression modeling method based on noise characteristic analysis[D]. Taiyuan: Shanxi University, 2023. (in Chinese)
|
12 |
NGUYEN T, MUMMADI C, NGO T, et al. SELF: learning to filter noisy labels with self-ensembling[C]// Proceedings of IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2020: 467-478.
|
13 |
HAN B, YAO Q, YU X, et al. Robust training of deep neural networks with extremely noisy labels[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Washington D. C., USA: IEEE Press, 2020: 458-466.
|
14 |
YU X, HAN B, YAO J, et al. How does disagreement help generalization against label corruption?[C]//Proceedings of IEEE International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2019: 7164-7173.
|
15 |
暴恒, 邓理睿, 张良, 等. 基于检索增强的噪声标签细粒度图像分类方法. 北京航空航天大学学报, 2024, 50(7): 2284- 2292.
doi: 10.13700/j.bh.1001-5965.2022.0589
|
|
BAO H, DENG L R, ZHANG L, et al. Retrieval-based augmentation for refined image classification with noisy labels. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2284- 2292.
doi: 10.13700/j.bh.1001-5965.2022.0589
|
16 |
TANAKA D, IKAMI D, YAMASAKI T, et al. Joint optimization framework for learning with noisy labels[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 5552-5560.
|
17 |
YI K, WU J X. Probabilistic end-to-end noise correction for learning with noisy labels[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE Press, 2019: 7017-7025.
|
18 |
LI J, SOCHER R, HOI S C H. DivideMix: learning with noisy labels as semi-supervised Learning[C]// Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2019: 268-277.
|
19 |
ISCEN A, VALMADRE J, ARNAB A, et al. Learning with neighbor consistency for noisy labels[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 4672-4681.
|
20 |
MALLEM S, HASNAT A, NAKIB A. Efficient meta label correction based on meta learning and bi-level optimization. Engineering Applications of Artificial Intelligence, 2023, 117, 105517.
doi: 10.1016/j.engappai.2022.105517
|
21 |
HOU C Q, YANG C H, REN F J, et al. A noise robust batch mode semi-supervised and active learning framework for image classification. Berlin, Germany: Springer, 2019: 541- 552.
|
22 |
古楠楠. 针对数据标签噪声的自步半监督降维. 计算机工程, 2023, 49(11): 131- 142.
doi: 10.19678/j.issn.1000-3428.0067397
|
|
GU N N. Self-paced semi-supervised dimensionality reduction for data with noisy labels. Computer Engineering, 2023, 49(11): 131- 142.
doi: 10.19678/j.issn.1000-3428.0067397
|
23 |
CUBUK E D, ZOPH B, SHLENS J, et al. Randaugment: practical automated data augmentation with a reduced search space[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 702-703.
|
24 |
ZHANG C Y, BENGIO S, HARDT M, et al. Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 2021, 64(3): 107- 115.
doi: 10.1145/3446776
|
25 |
SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch: simplifying semi-supervised learning with consistency and confidence[C]//Proceedings of NIPS'20. Cambridge, USA: MIT Press, 2020: 596-608.
|
26 |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2020: 1597-1607.
|
27 |
|