| 1 |  | 
																													
																						| 2 | BAX J J, BAUMGARTNER H. Third universal definition of myocardial infarction. Journal of the American College of Cardiology, 2012, 60 (16): 1581- 1598.  doi: 10.1016/j.jacc.2012.08.001
 | 
																													
																						| 3 |  BROWN A J ,  HA F J ,  MICHAIL M , et al.  Prehospital diagnosis and management of acute myocardial infarction. Berlin, Germany: Springer, 2018. | 
																													
																						| 4 | HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 2019, 25, 65- 69.  doi: 10.1038/s41591-018-0268-3
 | 
																													
																						| 5 | TRIPATHY R K, BHATTACHARYYA A, PACHORI R B. Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network. IEEE Sensors Journal, 2019, 19 (23): 11437- 11448.  doi: 10.1109/JSEN.2019.2935552
 | 
																													
																						| 6 | GOLDBERGER A L, GOLDBERGER Z D, SHVILKIN A. Clinical electrocardiography: a simplified approach e-book[M]. [S. 1. ]: Elsevier Health Sciences, 2017. | 
																													
																						| 7 | SAFDARIAN N, DABANLOO N J, ATTARODI G. A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal. Journal of Biomedical Science and Engineering, 2014, 7 (10): 818- 824.  doi: 10.4236/jbise.2014.710081
 | 
																													
																						| 8 | ARIF M, MALAGORE I A, AFSAR F A. Detection and localization of myocardial infarction using k-nearest neighbor classifier. Journal of Medical Systems, 2012, 36 (1): 279- 289.  doi: 10.1007/s10916-010-9474-3
 | 
																													
																						| 9 | 罗聪, 鲁进, 钱琼. 基于小波变换和残差神经网络的全盲频谱感知方法. 电讯技术, 2023, 63 (6): 775- 780. | 
																													
																						|  | LUO C, LU J, QIAN Q. A full-blind spectrum sensing approach based on wavelet transformation and residual neural network. Telecommunication Engineering, 2023, 63 (6): 775- 780. | 
																													
																						| 10 | ZHANG G, SI Y J, WANG D, et al. Automated detection of myocardial infarction using a gramian angular field and principal component analysis network. IEEE Access, 2019, 7, 171570- 171583.  doi: 10.1109/ACCESS.2019.2955555
 | 
																													
																						| 11 | HASAN N I, BHATTACHARJEE A. Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomedical Signal Processing and Control, 2019, 52, 128- 140.  doi: 10.1016/j.bspc.2019.04.005
 | 
																													
																						| 12 | BARMPOUTIS P, DIMITROPOULOS K, APOSTOLIDIS A, et al. Multi-lead ECG signal analysis for myocardial infarction detection and localization through the mapping of Grassmannian and Euclidean features into a common Hilbert space. Biomedical Signal Processing and Control, 2019, 52, 111- 119.  doi: 10.1016/j.bspc.2019.04.003
 | 
																													
																						| 13 | SRIDHAR C, LIH O S, JAHMUNAH V, et al. Accurate detection of myocardial infarction using non linear features with ECG signals. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 (3): 3227- 3244.  doi: 10.1007/s12652-020-02536-4
 | 
																													
																						| 14 | DOHARE A K, KUMAR V, KUMAR R. Detection of myocardial infarction in 12 lead ECG using support vector machine. Applied Soft Computing, 2018, 64, 138- 147.  doi: 10.1016/j.asoc.2017.12.001
 | 
																													
																						| 15 | BHASKAR N A. Performance analysis of support vector machine and neural networks in detection of myocardial infarction. Procedia Computer Science, 2015, 46, 20- 30.  doi: 10.1016/j.procs.2015.01.043
 | 
																													
																						| 16 | ACHARYA U R, FUJITA H, SUDARSHAN V K, et al. Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowledge-Based Systems, 2016, 99, 146- 156.  doi: 10.1016/j.knosys.2016.01.040
 | 
																													
																						| 17 | BANERJEE S. Identification of elevated ST segment and deep Q type MI variant using cross wavelet transform and hierarchical classification from ECG signals. Journal of Medical and Biological Engineering, 2017, 37 (4): 492- 507.  doi: 10.1007/s40846-017-0280-y
 | 
																													
																						| 18 | FENG K, PI X T, LIU H Y, et al. Myocardial infarction classification based on convolutional neural network and recurrent neural network. Applied Sciences, 2019, 9 (9): 1879.  doi: 10.3390/app9091879
 | 
																													
																						| 19 | REASAT T, SHAHNAZ C. Detection of inferior myocardial infarction using shallow convolutional neural networks[C]//Proceedings of IEEE Region 10 Humanitarian Technology Conference. Washington D. C., USA: IEEE Press, 2017: 346-354. | 
																													
																						| 20 | BALOGLU U B, TALO M, YILDIRIM O, et al. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognition Letters, 2019, 122, 23- 30.  doi: 10.1016/j.patrec.2019.02.016
 | 
																													
																						| 21 | ACHARYA U R, FUJITA H, OH S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 2017, 415/416, 190- 198.  doi: 10.1016/j.ins.2017.06.027
 | 
																													
																						| 22 | CAO Y J, WEI T T, ZHANG B, et al. ML-Net: multi-channel lightweight network for detecting myocardial infarction. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (10): 3721- 3731.  doi: 10.1109/JBHI.2021.3060433
 | 
																													
																						| 23 | LIU J K, WANG R X, WEN B, et al. Myocardial infarction detection and localization with electrocardiogram based on convolutional neural network. Chinese Journal of Electronics, 2021, 30 (5): 833- 842.  doi: 10.1049/cje.2021.06.005
 | 
																													
																						| 24 | FU L D, LU B C, NIE B, et al. Hybrid network with attention mechanism for detection and location of myocardial infarction based on 12-lead electrocardiogram signals. Sensors, 2020, 20 (4): 1020.  doi: 10.3390/s20041020
 | 
																													
																						| 25 | XIONG P, XUE Y P, ZHANG J S, et al. Localization of myocardial infarction with multi-lead ECG based on DenseNet. Computer Methods and Programs in Biomedicine, 2021, 203, 106024.  doi: 10.1016/j.cmpb.2021.106024
 | 
																													
																						| 26 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 4700-4708. | 
																													
																						| 27 | LIU W H, HUANG Q J, CHANG S, et al. Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomedical Signal Processing and Control, 2018, 45, 22- 32.  doi: 10.1016/j.bspc.2018.05.013
 | 
																													
																						| 28 | LIU W H, WANG F, HUANG Q J, et al. MFB-CBRNN: a hybrid network for MI detection using 12-lead ECGs. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (2): 503- 514.  doi: 10.1109/JBHI.2019.2910082
 | 
																													
																						| 29 | HE Z Y, YUAN Z Y, AN P F, et al. MFB-LANN: a lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning. Computer Methods and Programs in Biomedicine, 2021, 210, 106379.  doi: 10.1016/j.cmpb.2021.106379
 | 
																													
																						| 30 | HAN C, SHI L. ML-ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG. Computer Methods and Programs in Biomedicine, 2020, 185, 105138.  doi: 10.1016/j.cmpb.2019.105138
 | 
																													
																						| 31 | GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000, 101 (23): 215- 220. | 
																													
																						| 32 | WAGNER P, STRODTHOFF N, BOUSSELJOT R D, et al. PTB-XL, a large publicly available electrocardiography dataset. Scientific Data, 2020, 7, 154.  doi: 10.1038/s41597-020-0495-6
 | 
																													
																						| 33 | ZHANG D H. Wavelet approach for ECG baseline wander correction and noise reduction[C]//Proceedings of IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China: [s. n. ], 2005: 1212-1215. | 
																													
																						| 34 | PAN J, TOMPKINS W J. A real-time QRS detection algorithm. IEEE Transactions on Bio-Medical Engineering, 1985, 32 (3): 230- 236.  URL
 | 
																													
																						| 35 | PAN W B, AN Y, GUAN Y X, et al. MCA-Net: a multi-task channel attention network for Myocardial infarction detection and location using 12-lead ECGs. Computers in Biology and Medicine, 2022, 150, 106199.  doi: 10.1016/j.compbiomed.2022.106199
 | 
																													
																						| 36 | HE Z Y, YUAN S Y, ZHAO J H, et al. A novel myocardial infarction localization method using multi-branch DenseNet and spatial matching-based active semi-supervised learning. Information Sciences, 2022, 606, 649- 668.  doi: 10.1016/j.ins.2022.05.070
 |