1 |
|
2 |
BAX J J, BAUMGARTNER H. Third universal definition of myocardial infarction. Journal of the American College of Cardiology, 2012, 60 (16): 1581- 1598.
doi: 10.1016/j.jacc.2012.08.001
|
3 |
BROWN A J , HA F J , MICHAIL M , et al. Prehospital diagnosis and management of acute myocardial infarction. Berlin, Germany: Springer, 2018.
|
4 |
HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 2019, 25, 65- 69.
doi: 10.1038/s41591-018-0268-3
|
5 |
TRIPATHY R K, BHATTACHARYYA A, PACHORI R B. Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network. IEEE Sensors Journal, 2019, 19 (23): 11437- 11448.
doi: 10.1109/JSEN.2019.2935552
|
6 |
GOLDBERGER A L, GOLDBERGER Z D, SHVILKIN A. Clinical electrocardiography: a simplified approach e-book[M]. [S. 1. ]: Elsevier Health Sciences, 2017.
|
7 |
SAFDARIAN N, DABANLOO N J, ATTARODI G. A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal. Journal of Biomedical Science and Engineering, 2014, 7 (10): 818- 824.
doi: 10.4236/jbise.2014.710081
|
8 |
ARIF M, MALAGORE I A, AFSAR F A. Detection and localization of myocardial infarction using k-nearest neighbor classifier. Journal of Medical Systems, 2012, 36 (1): 279- 289.
doi: 10.1007/s10916-010-9474-3
|
9 |
罗聪, 鲁进, 钱琼. 基于小波变换和残差神经网络的全盲频谱感知方法. 电讯技术, 2023, 63 (6): 775- 780.
|
|
LUO C, LU J, QIAN Q. A full-blind spectrum sensing approach based on wavelet transformation and residual neural network. Telecommunication Engineering, 2023, 63 (6): 775- 780.
|
10 |
ZHANG G, SI Y J, WANG D, et al. Automated detection of myocardial infarction using a gramian angular field and principal component analysis network. IEEE Access, 2019, 7, 171570- 171583.
doi: 10.1109/ACCESS.2019.2955555
|
11 |
HASAN N I, BHATTACHARJEE A. Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomedical Signal Processing and Control, 2019, 52, 128- 140.
doi: 10.1016/j.bspc.2019.04.005
|
12 |
BARMPOUTIS P, DIMITROPOULOS K, APOSTOLIDIS A, et al. Multi-lead ECG signal analysis for myocardial infarction detection and localization through the mapping of Grassmannian and Euclidean features into a common Hilbert space. Biomedical Signal Processing and Control, 2019, 52, 111- 119.
doi: 10.1016/j.bspc.2019.04.003
|
13 |
SRIDHAR C, LIH O S, JAHMUNAH V, et al. Accurate detection of myocardial infarction using non linear features with ECG signals. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 (3): 3227- 3244.
doi: 10.1007/s12652-020-02536-4
|
14 |
DOHARE A K, KUMAR V, KUMAR R. Detection of myocardial infarction in 12 lead ECG using support vector machine. Applied Soft Computing, 2018, 64, 138- 147.
doi: 10.1016/j.asoc.2017.12.001
|
15 |
BHASKAR N A. Performance analysis of support vector machine and neural networks in detection of myocardial infarction. Procedia Computer Science, 2015, 46, 20- 30.
doi: 10.1016/j.procs.2015.01.043
|
16 |
ACHARYA U R, FUJITA H, SUDARSHAN V K, et al. Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowledge-Based Systems, 2016, 99, 146- 156.
doi: 10.1016/j.knosys.2016.01.040
|
17 |
BANERJEE S. Identification of elevated ST segment and deep Q type MI variant using cross wavelet transform and hierarchical classification from ECG signals. Journal of Medical and Biological Engineering, 2017, 37 (4): 492- 507.
doi: 10.1007/s40846-017-0280-y
|
18 |
FENG K, PI X T, LIU H Y, et al. Myocardial infarction classification based on convolutional neural network and recurrent neural network. Applied Sciences, 2019, 9 (9): 1879.
doi: 10.3390/app9091879
|
19 |
REASAT T, SHAHNAZ C. Detection of inferior myocardial infarction using shallow convolutional neural networks[C]//Proceedings of IEEE Region 10 Humanitarian Technology Conference. Washington D. C., USA: IEEE Press, 2017: 346-354.
|
20 |
BALOGLU U B, TALO M, YILDIRIM O, et al. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognition Letters, 2019, 122, 23- 30.
doi: 10.1016/j.patrec.2019.02.016
|
21 |
ACHARYA U R, FUJITA H, OH S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 2017, 415/416, 190- 198.
doi: 10.1016/j.ins.2017.06.027
|
22 |
CAO Y J, WEI T T, ZHANG B, et al. ML-Net: multi-channel lightweight network for detecting myocardial infarction. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (10): 3721- 3731.
doi: 10.1109/JBHI.2021.3060433
|
23 |
LIU J K, WANG R X, WEN B, et al. Myocardial infarction detection and localization with electrocardiogram based on convolutional neural network. Chinese Journal of Electronics, 2021, 30 (5): 833- 842.
doi: 10.1049/cje.2021.06.005
|
24 |
FU L D, LU B C, NIE B, et al. Hybrid network with attention mechanism for detection and location of myocardial infarction based on 12-lead electrocardiogram signals. Sensors, 2020, 20 (4): 1020.
doi: 10.3390/s20041020
|
25 |
XIONG P, XUE Y P, ZHANG J S, et al. Localization of myocardial infarction with multi-lead ECG based on DenseNet. Computer Methods and Programs in Biomedicine, 2021, 203, 106024.
doi: 10.1016/j.cmpb.2021.106024
|
26 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 4700-4708.
|
27 |
LIU W H, HUANG Q J, CHANG S, et al. Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomedical Signal Processing and Control, 2018, 45, 22- 32.
doi: 10.1016/j.bspc.2018.05.013
|
28 |
LIU W H, WANG F, HUANG Q J, et al. MFB-CBRNN: a hybrid network for MI detection using 12-lead ECGs. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (2): 503- 514.
doi: 10.1109/JBHI.2019.2910082
|
29 |
HE Z Y, YUAN Z Y, AN P F, et al. MFB-LANN: a lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning. Computer Methods and Programs in Biomedicine, 2021, 210, 106379.
doi: 10.1016/j.cmpb.2021.106379
|
30 |
HAN C, SHI L. ML-ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG. Computer Methods and Programs in Biomedicine, 2020, 185, 105138.
doi: 10.1016/j.cmpb.2019.105138
|
31 |
GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000, 101 (23): 215- 220.
|
32 |
WAGNER P, STRODTHOFF N, BOUSSELJOT R D, et al. PTB-XL, a large publicly available electrocardiography dataset. Scientific Data, 2020, 7, 154.
doi: 10.1038/s41597-020-0495-6
|
33 |
ZHANG D H. Wavelet approach for ECG baseline wander correction and noise reduction[C]//Proceedings of IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China: [s. n. ], 2005: 1212-1215.
|
34 |
PAN J, TOMPKINS W J. A real-time QRS detection algorithm. IEEE Transactions on Bio-Medical Engineering, 1985, 32 (3): 230- 236.
URL
|
35 |
PAN W B, AN Y, GUAN Y X, et al. MCA-Net: a multi-task channel attention network for Myocardial infarction detection and location using 12-lead ECGs. Computers in Biology and Medicine, 2022, 150, 106199.
doi: 10.1016/j.compbiomed.2022.106199
|
36 |
HE Z Y, YUAN S Y, ZHAO J H, et al. A novel myocardial infarction localization method using multi-branch DenseNet and spatial matching-based active semi-supervised learning. Information Sciences, 2022, 606, 649- 668.
doi: 10.1016/j.ins.2022.05.070
|