1 |
TRIKI N, KARRAY M, KSANTINI M. A real-time traffic sign recognition method using a new attention-based deep convolutional neural network for smart vehicles. Applied Sciences, 2023, 13(8): 4793.
doi: 10.3390/app13084793
|
2 |
曹健, 陈怡梅, 李海生, 等. 基于深度学习的道路小目标检测综述. 计算机工程, 2023, 49(10): 1- 12.
doi: 10.19678/j.issn.1000-3428.0065984
|
|
CAO J, CHEN Y M, LI H S, et al. Survey of small target detection on roads based on deep learning. Computer Engineering, 2023, 49(10): 1- 12.
doi: 10.19678/j.issn.1000-3428.0065984
|
3 |
|
4 |
罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述. 电子学报, 2020, 48(6): 1230- 1239.
|
|
LUO H L, CHEN H K. Review of target detection research based on deep learning. Acta Electronica Sinica, 2020, 48(6): 1230- 1239.
|
5 |
|
6 |
QIAO S Y, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10213-10224.
|
7 |
LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-10-05]. https://arxiv.org/abs/2209.02976.
|
8 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
9 |
|
10 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587.
|
11 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
12 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
13 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2961-2969.
|
14 |
|
15 |
CHU J, ZHANG C, YAN M, et al. TRD-YOLO: a real-time, high-performance small traffic sign detection algorithm. Sensors (Basel, Switzerland), 2023, 23(8): 3871.
doi: 10.3390/s23083871
|
16 |
SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 16519-16529.
|
17 |
GAO X, CHEN L, WANG K, et al. Improved traffic sign detection algorithm based on Faster R-CNN. Applied Sciences, 2022, 12(18): 8948.
doi: 10.3390/app12188948
|
18 |
赵宏, 冯宇博. 基于CGS-Ghost YOLO的交通标志检测研究. 计算机工程, 2023, 49(12): 194- 204.
doi: 10.19678/j.issn.1000-3428.0066520
|
|
ZHAO H, FENG Y B. Research on traffic sign detection based on CGS-Ghost YOLO. Computer Engineering, 2023, 49(12): 194- 204.
doi: 10.19678/j.issn.1000-3428.0066520
|
19 |
|
20 |
GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 7036-7045.
|
21 |
YANG J F, FU X Y, HU Y W, et al. PanNet: a deep network architecture for pan-sharpening[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 5449-5457.
|
22 |
ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9759-9768.
|
23 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPs for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 12021-12031.
|
24 |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
25 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2112.05561v1.
|
26 |
JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 784-799.
|
27 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
doi: 10.1016/j.neucom.2022.07.042
|
28 |
|
29 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
30 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11534-11542.
|
31 |
|
32 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 658-666.
|