1 |
DAIS D, BAL I E, SMYROU E, et al. Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Automation in Construction, 2021, 125 (3): 606- 615.
URL
|
2 |
SAFAEI N, SMADI O, MASOUD A, et al. An automatic image processing algorithm based on crack pixel density for pavement crack detection and classification. International Journal of Pavement Research and Technology, 2022, 15 (1): 159- 172.
doi: 10.1007/s42947-021-00006-4
|
3 |
LI B X, WANG K C P, ZHANG A, et al. Automatic classification of pavement crack using deep convolutional neural network. International Journal of Pavement Engineering, 2020, 21 (4): 457- 463.
doi: 10.1080/10298436.2018.1485917
|
4 |
PEI Y T, HUANG Y P, ZOU Q, et al. Effects of image degradation and degradation removal to CNN-based image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (4): 1239- 1253.
doi: 10.1109/TPAMI.2019.2950923
|
5 |
WU Y W, ZHANG Z M, WANG G H. Unsupervised deep feature transfer for low resolution image classification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshop. Washington D. C., USA: IEEE Press, 2020: 1065-1069.
|
6 |
ZHU M J, HAN K, ZHANG C, et al. Low-resolution visual recognition via deep feature distillation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2019: 3762-3766.
|
7 |
MA T, TIAN W, XIE Y. Multi-level knowledge distillation for low-resolution object detection and facial expression recognition. Knowledge-Based Systems, 2022, 240 (4): 36- 43.
doi: 10.1016/j.knosys.2022.108136
|
8 |
QI L, KUEN J, GU J X, et al. Multi-scale aligned distillation for low-resolution detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 14438-14448.
|
9 |
TAN W M, YAN B, BARE B. Feature super-resolution: make machine see more clearly[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3994-4002.
|
10 |
HAN K, HUANG Y, SONG C, et al. Adaptive super-resolution for person re-identification with low-resolution images. Pattern Recognition, 2021, 114 (7): 82- 93.
doi: 10.1016/j.patcog.2020.107682
|
11 |
LU Z, JIANG X D, KOT A. Deep coupled ResNet for low-resolution face recognition. IEEE Signal Processing Letters, 2018, 25 (4): 526- 530.
doi: 10.1109/LSP.2018.2810121
|
12 |
CHEN H, PEI Y, ZHAO H, et al. Super-resolution guided knowledge distillation for low-resolution image classification. Pattern Recognition Letters, 2022, 155 (12): 62- 68.
|
13 |
HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3 (6): 610- 621.
doi: 10.1109/TSMC.1973.4309314
|
14 |
BANERJI S, SINHA A, LIU C. New image descriptors based on color, texture, shape, and wavelets for object and scene image classification. Neurocomputing, 2013, 117 (7): 173- 185.
doi: 10.1016/j.neucom.2013.02.014
|
15 |
LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
16 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005: 886-893.
|
17 |
BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[M]//LEONARDIS A, BISCHOF H, PINZ A. Computer Vision-ECCV 2006. Berlin, Germany: Springer, 2006: 404-417.
|
18 |
KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020, 53 (8): 5455- 5516.
doi: 10.1007/s10462-020-09825-6
|
19 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
20 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-06-20]. https://arxiv.org/abs/1704.04861.
|
21 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
22 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6848-6856.
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
24 |
FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3141-3149.
|
25 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 9992-10002.
|
26 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2022-06-20]. https://arxiv.org/abs/2010.11929.
|
27 |
SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 16514-16524.
|
28 |
HARRIS J L. Diffraction and resolving power. Journal of the Optical Society of America, 1964, 54 (7): 931- 942.
doi: 10.1364/JOSA.54.000931
|
29 |
TORALDO DI FRANCIA G. Resolving power and information. Journal of the Optical Society of America, 1955, 45 (7): 497- 503.
doi: 10.1364/JOSA.45.000497
|
30 |
VANDEWALLE P, SBAIZ L, VANDEWALLE J, et al. Super-resolution from unregistered and totally aliased signals using subspace methods. IEEE Transactions on Signal Processing, 2007, 55 (7): 3687- 3703.
doi: 10.1109/TSP.2007.894257
|
31 |
REN C, HE X H, NGUYEN T Q. Single image super-resolution via adaptive high-dimensional non-local total variation and adaptive geometric feature. IEEE Transactions on Image Processing, 2017, 26 (1): 90- 106.
doi: 10.1109/TIP.2016.2619265
|
32 |
LIU C, SUN D Q. On Bayesian adaptive video super resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (2): 346- 360.
doi: 10.1109/TPAMI.2013.127
|
33 |
YANG D Q, LI Z M, XIA Y T, et al. Remote sensing image super-resolution: challenges and approaches[C]//Proceedings of 2015 IEEE International Conference on Digital Signal Processing. Washington D. C., USA: IEEE Press, 2015: 196-200.
|
34 |
DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[M]//FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision-ECCV 2014. Berlin, Germany: Springer, 2014: 184-199.
|
35 |
WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3365- 3387.
doi: 10.1109/TPAMI.2020.2982166
|
36 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA. IEEE Press, 2016: 1646-1654.
|
37 |
CHAN K C K, ZHOU S C, XU X Y, et al. BasicVSR: improving video super-resolution with enhanced propagation and alignment[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA. IEEE Press, 2022: 5962-5971.
|
38 |
LYU Q, SHAN H M, STEBER C, et al. Multi-contrast super-resolution MRI through a progressive network. IEEE Transactions on Medical Imaging, 2020, 39 (9): 2738- 2749.
doi: 10.1109/TMI.2020.2974858
|
39 |
GU J J, LU H N, ZUO W M, et al. Blind super-resolution with iterative kernel correction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA. IEEE Press, 2020: 1604-1613.
|
40 |
|
41 |
黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述. 计算机学报, 2022, 45 (3): 624- 653.
URL
|
|
HUANG Z H, YANG S Z, LIN W, et al. Knowledge distillation: a survey. Chinese Journal of Computers, 2022, 45 (3): 624- 653.
URL
|
42 |
AFOURAS T, CHUNG J S, ZISSERMAN A. ASR is all You need: cross-modal distillation for lip reading[C]//Proceedings of ICASSP 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2020: 2143-2147.
|
43 |
YE H J, LU S, ZHAN D C. Distilling cross-task knowledge via relationship matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12393-12402.
|
44 |
GAO Q Q, ZHAO Y, LI G, et al. Image super-resolution using knowledge distillation[M]//JAWAHAR C V, LI H D, MORI G, et al. Computer Vision-ACCV 2018. Berlin, Germany: Springer, 2019: 527-541.
|
45 |
LIU Y S, ZHANG L Q, HAN Z Z, et al. Integrating knowledge distillation with learning to rank for few-shot scene classification. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60 (7): 1- 12.
|
46 |
HUI Z, GAO X B, YANG Y C, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 2024-2032.
|
47 |
LIU J, TANG J, WU G S. Residual feature distillation network for lightweight image super-resolution[M]//BARTOLI A, FUSIELLO A. Computer Vision-ECCV 2020 Workshops. Berlin, Germany: Springer, 2020: 41-55.
|
48 |
LEE W, LEE J, KIM D, et al. Learning with privileged information for efficient image super-resolution[M]//WONKYUNG L, JUNGHYUP, DOHYUNG K, et al. Computer Vision-ECCV 2020. Berlin, Germany: Springer, 2020: 465-482.
|
49 |
TOUVRON H, BOJANOWSKI P, CARON M, et al. ResMLP: feedforward networks for image classification with data-efficient training[EB/OL]. [2022-06-20]. https://arxiv.org/abs/2105.03404.
|
50 |
ZHANG J N, PENG H W, WU K, et al. MiniViT: compressing vision transformers with weight multiplexing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 12135-12144.
|
51 |
GRAHAM B, EL-NOUBY A, TOUVRON H, et al. LeViT: a vision transformer in ConvNet's clothing for faster inference[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 12239-12249.
|
52 |
LENG Z Q, TAN M X, LIU C X, et al. PolyLoss: a polynomial expansion perspective of classification loss functions[EB/OL]. [2022-06-20]. https://arxiv.org/abs/2204.12511.
|
53 |
LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA. IEEE Press, 2022: 11966-11976.
|
54 |
|