1 |
FÄRBER M, JATOWT A. Citation recommendation: approaches and datasets. International Journal on Digital Libraries, 2020, 21(4): 375- 405.
doi: 10.1007/s00799-020-00288-2
|
2 |
TANG J, ZHANG J. A discriminative approach to topic-based citation recommendation[C]//Proceedings of Acific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2009: 572-579.
|
3 |
SHAROU K A, LI Z, SPECIA L. Towards a better understanding of noise in natural language processing[C]//Proceedings of the International Conference on Recent Advances in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 53-62.
|
4 |
陈海华, 孟睿, 陆伟. 学术文献引文推荐研究进展. 图书情报工作, 2015, 59(15): 133-143, 147.
|
|
CHEN H H, MENG R, LU W. Research review on citation recommendation of academic literatures. Library and Information Service, 2015, 59(15): 133-143, 147.
|
5 |
CHEN L, XIA M M. A context-aware recommendation approach based on feature selection. Applied Intelligence, 2021, 51(2): 865- 875.
doi: 10.1007/s10489-020-01835-9
|
6 |
CHEN X, ZHAO H J, ZHAO S, et al. Citation recommendation based on citation tendency. Scientometrics, 2019, 121(2): 937- 956.
doi: 10.1007/s11192-019-03225-6
|
7 |
PORNPRASIT C, LIU X, KIATTIPADUNGKUL P, et al. Enhancing citation recommendation using citation network embedding. Scientometrics, 2022, 127(1): 233- 264.
doi: 10.1007/s11192-021-04196-3
|
8 |
MA S T, ZHANG H, ZHANG C Z, et al. Chronological citation recommendation with time preference. Scientometrics, 2021, 126(4): 2991- 3010.
doi: 10.1007/s11192-021-03878-2
|
9 |
ALI Z, QI G L, KEFALAS P, et al. A graph-based taxonomy of citation recommendation models. Artificial Intelligence Review, 2020, 53(7): 5217- 5260.
doi: 10.1007/s10462-020-09819-4
|
10 |
HUANG W Y, KATARIA S, CARAGEA C, et al. Recommending citations: translating papers into references[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2012: 1910-1914.
|
11 |
HUANG W Y, WU Z H, LIANG C, et al. A neural probabilistic model for context based citation recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2015: 1-10.
|
12 |
EBESU T, FANG Y. Neural citation network for context-aware citation recommendation[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2017: 1093-1096.
|
13 |
ROBERTSON S, ZARAGOZA H. The probabilistic relevance framework: BM25 and beyond. Foundations and Trends in Information Retrieval, 2009, 3(4): 333- 389.
doi: 10.1561/1500000019
|
14 |
FÄRBER M, KLEIN T, SIGLOCH J. Neural citation recommendation: a reproducibility study[C]//Proceedings of the 10th International Workshop on Bibliometric-Enhanced Information Retrieval Co-Located with 42nd European Conference on Information Retrieval. Lisbon, Portugal: [s. n. ], 2020: 66-74.
|
15 |
DINH T N, PHAM P, NGUYEN G L, et al. Enhanced context-aware citation recommendation with auxiliary textual information based on an auto-encoding mechanism. Applied Intelligence, 2023, 53(14): 17381- 17390.
doi: 10.1007/s10489-022-04423-1
|
16 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2023-09-05]. https://arxiv.org/pdf/1810.04805.
|
17 |
SCHIAPPA M C, RAWAT Y S, SHAH M. Self-supervised learning for videos: a survey. ACM Computing Surveys, 2023, 55(13s): 1- 37.
|
18 |
VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM Press, 2008: 1096-1103.
|
19 |
JEONG C, JANG S, PARK E, et al. A context-aware citation recommendation model with BERT and graph convolutional networks. Scientometrics, 2020, 124(3): 1907- 1922.
doi: 10.1007/s11192-020-03561-y
|
20 |
COHAN A, FELDMAN S, BELTAGY I, et al. SPECTER: document-level representation learning using citation-informed Transformers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 2270-2282.
|
21 |
许凤, 杨兴耀, 于炯, 等. 小波卷积增强的对比学习推荐算法. 计算机工程, 2023, 49(5): 105-111, 121.
doi: 10.19678/j.issn.1000-3428.0064747
|
|
XU F, YANG X Y, YU J, et al. Wavelet convolution enhanced contrastive learning recommendation algorithm. Computer Engineering, 2023, 49(5): 105-111, 121.
doi: 10.19678/j.issn.1000-3428.0064747
|
22 |
陈明惠, 王腾, 袁媛, 等. 引入双编码器模型的OCT视网膜图像分割. 光电工程, 2023, 50(10): 230146.
|
|
CHEN M H, WANG T, YUAN Y, et al. Study on retinal OCT segmentation with dual-encoder. Opto-Electronic Engineering, 2023, 50(10): 230146.
|
23 |
张少东, 杨兴耀, 于炯, 等. 基于对比学习和傅里叶变换的序列推荐算法. 电子科技大学学报, 2023, 52(4): 610- 619.
|
|
ZHANG S D, YANG X Y, YU J, et al. Sequence recommendation based on contrast learning and Fourier transform. Journal of University of Electronic Science and Technology of China, 2023, 52(4): 610- 619.
|
24 |
ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 1-10.
|
25 |
DU X Y, YUAN H H, ZHAO P P, et al. Contrastive enhanced slide filter mixer for sequential recommendation[EB/OL]. [2023-09-05]. http://arxiv.org/abs/2305.04322.
|
26 |
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, USA: MIT Press, 2016.
|
27 |
COLLOBERT R, WESTON J. A unified architecture for natural language processing: deep neural networks with multitask learning[C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM Press, 2008: 160-167.
|
28 |
|
29 |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. [2023-09-05]. https://arxiv.org/pdf/1406.1078.
|
30 |
LONG K H, LI S S, WANG P C, et al. Integrating title and citation context semantics of citing paper via weighted attentions for local citation recommendation[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D. C., USA: IEEE Press, 2022: 1-7.
|