1 |
董添, 李广, 杨振宇, 等. 基于Transformer的电网企业文件密级分类系统. 吉林大学学报(信息科学版), 2022, 40 (6): 1039- 1044.
URL
|
|
DONG T, LI G, YANG Z Y, et al. Annotation system of file secrecy for power grid enterprises based on transformer. Journal of Jilin University (Information Science Edition), 2022, 40 (6): 1039- 1044.
URL
|
2 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 257-268.
|
3 |
建澜涛, 任秀江, 张祯, 等. E级高性能计算机的维护故障诊断系统研究. 计算机工程, 2022, 48 (12): 24- 37.
URL
|
|
JIAN L T, REN X J, ZHANG Z, et al. Research on maintenance fault diagnosis system for E-class high-performance computer. Computer Engineering, 2022, 48 (12): 24- 37.
URL
|
4 |
周宇, 曹英楠, 王永超. 面向大数据的数据处理与分析算法综述. 南京航空航天大学学报, 2021, 53 (5): 664- 676.
URL
|
|
ZHOU Y, CAO Y N, WANG Y C. Overview of data processing and analysis algorithms for big data. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53 (5): 664- 676.
URL
|
5 |
VIDAL Y, POZO F, TUTIVÉN C. Wind turbine multi-fault detection and classification based on SCADA data. Energies, 2018, 11 (11): 3018.
doi: 10.3390/en11113018
|
6 |
EBRAHIMI J, DOU D J. Chain based RNN for relation classification[C]//Proceedings of 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Washington D. C., USA: IEEE Press, 2015: 1244-1249.
|
7 |
BOROVYKH A, BOHTE S, OOSTERLEE C W. Conditional time series forecasting with convolutional neural networks[EB/OL]. [2023-05-10]. http://arxiv.org/abs/1703.04691.
|
8 |
|
9 |
LIU K, YANG G, CHEN X, et al. EL-CodeBert: better exploiting CodeBert to support source code-related classification tasks[C]//Proceedings of the 13th Asia-Pacific Symposium on Internetware. New York, USA: ACM Press, 2022: 147-155.
|
10 |
AZIZ F, UL HAQ A, AHMAD S, et al. A novel convolutional neural network-based approach for fault classification in photovoltaic arrays. IEEE Access, 2020, 8, 41889- 41904.
doi: 10.1109/ACCESS.2020.2977116
|
11 |
REN L Y, YONG B. Research on wind turbine fault classification algorithm based on K-means clustering. London, UK: CRC Press, 2022: 446- 450.
|
12 |
ZHAO H S, LIU H H, HU W J, et al. Anomaly detection and fault analysis of wind turbine components based on deep learning network. Renewable Energy, 2018, 127, 825- 834.
doi: 10.1016/j.renene.2018.05.024
|
13 |
RAHIMILARKI R, GAO Z W, JIN N L, et al. Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine. Renewable Energy, 2022, 185, 916- 931.
doi: 10.1016/j.renene.2021.12.056
|
14 |
|
15 |
|
16 |
|
17 |
DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]// Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2017: 933-941.
|
18 |
|
19 |
RICHTER S, JONES C N, MORARI M. Computational complexity certification for real-time MPC with input constraints based on the fast gradient method. IEEE Transactions on Automatic Control, 2012, 57 (6): 1391- 1403.
doi: 10.1109/TAC.2011.2176389
|
20 |
READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification. Machine Learning, 2011, 85 (3): 333- 359.
doi: 10.1007/s10994-011-5256-5
|
21 |
BOUTELL M R, LUO J B, SHEN X P, et al. Learning multi-label scene classification. Pattern Recognition, 2004, 37 (9): 1757- 1771.
doi: 10.1016/j.patcog.2004.03.009
|
22 |
NAM J, MENCÍA E, KIM H J, et al. Maximizing subset accuracy with recurrent neural networks in multi-label classification[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 431-445.
|
23 |
TAKAHASHI K, YAMAMOTO K, KUCHIBA A, et al. Confidence interval for micro-averaged F1 and macro-averaged F1 scores. Applied Intelligence, 2022, 52 (5): 4961- 4972.
doi: 10.1007/s10489-021-02635-5
|
24 |
|
25 |
GHAMRAWI N, MCCALLUM A. Collective multi-label classification[C]//Proceedings of the 14th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2005: 195-200.
|
26 |
ZHENG Z W, LE N Q K, CHUA M C H. MaskDNA-PGD: an innovative deep learning model for detecting DNA methylation by integrating mask sequences and adversarial PGD training as a data augmentation method. Chemometrics and Intelligent Laboratory Systems, 2023, 232, 104715.
doi: 10.1016/j.chemolab.2022.104715
|