[1] 李国进,胡洁,艾矫燕.基于改进SSD算法的车辆检测[J].计算机工程, 2022, 48(1):266-274. LI G J, HU J, AI J Y. Vehicle detection based on improved SSD algorithm[J]. Computer Engineering, 2022, 48(1):266-274.(in Chinese) [2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:335-347. [3] BERG A C, FU C Y, SZEGEDY C, et al. SSD:single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2015:557-565. [4] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA:ACM Press, 2014:580-587. [6] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[M]. Berlin, Germany:Springer, 2014. [7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [8] 郭克友,王苏东,李雪,等.基于Dim env-YOLO算法的昏暗场景车辆多目标检测[J].计算机工程, 2023, 49(3):312-320. GUO K Y, WANG S D, LI X, et al. Multi-target detection of vehicles in dim scenes based on Dim env-YOLO algorithm[J]. Computer Engineering, 2023, 49(3):312-320.(in Chinese) [9] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2023-11-20] . https://arxiv.org/abs/2004.10934.pdf. [10] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[EB/OL].[2023-11-20] . https://arxiv.org/abs/1905.02244.pdf. [11] 李松江,耿兰兰,王鹏.基于改进Yolov4的车辆目标检测[J].计算机工程, 2023, 49(4):272-280. LI S J, GENG L L, WANG P. Vehicle target detection based on improved Yolov4[J]. Computer Engineering, 2023, 49(4):272-280.(in Chinese) [12] WANG Q, WU B, ZHU P, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[EB/OL].[2023-11-20] . http://arxiv.org/pdf/1910.03151v4.pdf. [13] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2015:1-9. [14] 郑秋梅,王璐璐,王风华.基于改进卷积神经网络的交通场景小目标检测[J].计算机工程, 2020, 46(6):26-33. ZHENG Q M, WANG L L, WANG H. Small object detection in traffic scene based on improved convolutional neural network[J]. Computer Engineering, 2020, 46(6):26-33.(in Chinese) [15] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2023-11-20] . https://arxiv.org/pdf/1804.02767. [16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:770-778. [17] LIAN J, YIN Y, LI L, et al. Small object detection in traffic scenes based on attention feature fusion[J]. Sensors, 2021, 21(9):3031. [18] CAI Y, LUAN T, GAO H, et al. YOLOv4-5D:an effective and efficient object detector for autonomous driving[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70(1):1-13. [19] WANG R, WANG Z, XU Z, et al. A real-time object detector for autonomous vehicles based on YOLOv4[J]. Computational Intelligence and Neuroscience, 2021, 2021:1. [20] 原蕾,王科俊.基于注意力机制与特征融合的改进YOLOv7车辆检测方法[J].国外电子测量技术, 2023, 42(9):49-57. YUAN L, WANG K J. Vehicle detection based on YOLOv7 improved by attention mechanism and feature fusion[J]. Foreign Electronic Measurement Technology, 2023, 42(9):49-57.(in Chinese) [21] 蔡刘畅,杨培峰,张秋仪.基于YOLOv7的道路监控车辆检测方法[J].陕西科技大学学报, 2023, 41(6):155-161, 175. CAI L C, YANG P F, ZHANG Q Y. Vehicle detection method based on YOLOv7 in traffic monitoring[J]. Journal of Shaanxi University of Science& Technology, 2023, 41(6):155-161, 175.(in Chinese) [22] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:267-275. [23] HAN K, WANG Y, TIAN Q, et al. GhostNet:more features from cheap operations[EB/OL].[2023-11-20] . https://arxiv.org/pdf/1911.11907.pdf. [24] 宋华杰,周磊.基于函数改进的YOLOv3车辆检测与识别算法研究[J].智能科学与技术学报, 2023, 5(4):535-542. SONG H J, ZHO L. Vehicle detection and recognition algorithm based on function improvement of YOLOv3[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(4):535-542.(in Chinese) [25] 郭奕裕,周箩鱼.安全帽佩戴检测网络模型的轻量化设计[J].计算机工程, 2023, 49(4):312-320. GUO Y Y, ZHOU L Y. Lightweight design of safety helmet wearing detection network model[J]. Computer Engineering, 2023, 49(4):312-320.(in Chinese) [26] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:8759-8768. [27] LI X, WANG W, WU L, et al. Generalized focal loss:learning qualified and distributed bounding boxes for dense object detection[EB/OL].[2023-11-20] . http://arxiv.org/abs/2006.04388. [28] CHEN J, KAO S, HE H, et al. Run, don't walk:chasing higher FLOPS for faster neural networks[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:365-376. [29] TAN M X, PANG R M, LE Q V. EfficientDet:scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2020:2535-2546. [30] DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head:unifying object detection heads with attentions[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2021:479-488. [31] GEVORGYAN Z. SIoULoss:more powerful learning for bounding box regression[EB/OL].[2023-11-20] . https://arxiv.org/abs/2205.12740. [32] WANG J, XU C, YANG W, et al. A normalized gaussian wasserstein distance for tiny object detection[EB/OL].[2023-11-20] . https://arxiv.org/abs/2110.13389. [33] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:354-365. [34] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:1800-1807. [35] LI H, LI J, WEI H, et al. Slim-neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[EB/OL].[2023-11-20] . https://arxiv.org/abs/2206.02424. [36] LEE J, PARK S, MO S, et al. Layer-adaptive sparsity for the magnitude-based pruning[EB/OL].[2023-11-20] . https://arxiv.org/abs/2010.07611v2. [37] YANG G Y, LEI J, ZHU Z K, et al. AFPN:asymptotic feature pyramid network for object detection[C]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA:IEEE Press, 2023:663-675. [38] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:483-492. [39] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506:146-157. [40] ZHANG H, XU C, ZHANG S. Inner-IoU:more effective intersection over union loss with auxiliary bounding box[EB/OL].[2023-11-20] . https://arxiv.org/abs/2311.02877. [41] MA S L, XU Y. MPDIoU:a loss for efficient and accurate bounding box regression[EB/OL].[2023-11-20] . https://arxiv.org/abs/2307.07662. [42] LECUN Y, DENKER J, SOLLA S. Optimal brain damage[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA:MIT Press, 1989:667-676. [43] LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient ConvNets[EB/OL].[2023-11-20] . https://arxiv.org/pdf/1608.08710. [44] MOLCHANOV P, MALLYA A, TYREE S, et al. Importance estimation for neural network pruning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:11256-11264. [45] FANG G F, MA X Y, SONG M L, et al. DepGraph:towards any structural pruning[EB/OL].[2023-11-20] . https://arxiv.org/abs/2301.12900. |