作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (5): 154-165. doi: 10.19678/j.issn.1000-3428.0069143

• 人工智能与模式识别 • 上一篇    下一篇

基于预训练递归Transformer-Mixer的多维时间序列分类研究

邓泽先1,2,3, 张云贵1,2,3, 张琳2,3   

  1. 1. 中国钢研科技集团有限公司绿色化智能化技术中心, 北京 100081;
    2. 冶金自动化研究设计院有限公司研发中心, 北京 100071;
    3. 冶金智能制造系统全国重点实验室, 北京 100071
  • 收稿日期:2023-12-29 修回日期:2024-03-27 出版日期:2025-05-15 发布日期:2024-06-07
  • 通讯作者: 张云贵,E-mail:zhangyg01@cisri.com.cn E-mail:zhangyg01@cisri.com.cn
  • 基金资助:
    国家重点研发计划(2020YFB1712803)。

Research on Multi-Dimensional Time Series Classification Based on the Pre-Trained Recursive Transformer-Mixer

DENG Zexian1,2,3, ZHANG Yungui1,2,3, ZHANG Lin2,3   

  1. 1. Green and Intelligence Technology Center, China Iron and Steel Research Institute Group Co., Ltd., Beijing 100081, China;
    2. Research and Development Center, Automation Research and Design Institute of Metallurgical Industry Co., Ltd., Beijing 100071, China;
    3. State Key Laboratory of Metallurgical Intelligent Manufacturing System, Beijing 100071, China
  • Received:2023-12-29 Revised:2024-03-27 Online:2025-05-15 Published:2024-06-07

摘要: 多维时间序列分类在工业、医疗、金融等领域有着广泛应用,在工业产品质量控制、疾病预测、金融风险控制等方面发挥着重要作用。多维时间序列时间依赖关系和空间依赖关系同等重要,传统多维时间序列模型只对时间或空间某一维度重点关注。为此,提出一种基于预训练递归Transformer-Mixer的多维时间序列分类模型PRTMMTSC。模型基于Transformer-Mixer模块充分学习多维时间序列时间和空间的关联关系。为进一步提升分类模型的性能,受异常检测模型的启发,将预训练后的隐藏层特征和残差特征进行融合,并采用PolyLoss损失函数对模型进行训练。为减少模型训练参数量,模型中Transformer-Mixer模块采用递归方式构建,使多层可训练参数量仅为单层Transformer-Mixer参数量。在UEA多维时间数据集上的实验结果表明,所提模型的性能优于对比模型,相较于TARNet模型和RLPAM模型的准确率分别提升3.03%和4.69%。在UEA及IF钢夹渣缺陷分类的消融实验验证预训练方式、Transformer-Mixer模块、残差信息及PolyLoss损失函数的有效性。

关键词: 多维时间序列分类, Transformer-Mixer模块, 机器学习, 预训练, IF钢夹渣缺陷预报

Abstract: Multi-dimensional time series classification is widely used in industry, medical treatment, finance and other fields; it plays an important role in industrial product quality control, disease prediction, financial risk control and so on. Aiming at the problem that time dependence and spatial dependence of multi-dimensional time series are equally important, and that traditional multi-dimensional time series models only focus on a certain dimension of time or space, this paper proposes a multi-dimensional time series classification model based on the pre-trained recursive Transformer-Mixer PRTMMTSC. The model is based on a Transformer-Mixer module that can fully learn the temporal and spatial correlations of multi-dimensional time series. To further improve the classification performance, inspired by the anomaly detection model, the proposed model combines the pre-trained hidden layer features and the residual features, and uses the PolyLoss loss function for training. To reduce the number of model training parameters, the Transformer-Mixer module in the model is constructed recursively,so that the number of multi-layer trainable parameters is only the number of single-layer Transformer-Mixer parameters. The experimental results on the UEA datasets show that the performance of the proposed model is better than that of the contrast models. Compared with the TARNet model and the RLPAM model, the accuracy of proposed model has increased by 3.03% and 4.69%, respectively. Ablation experiments on the UEA and the IF steel inclusions defect classification further illustrate the effectiveness of the proposed pre-trained method, Transformer-Mixer module, residual information, and the PolyLoss loss function.

Key words: multi-dimensional time series classification, Transformer-Mixer module, machine learning, pre-training, IF steel inclusions defect prediction

中图分类号: