[1] MEHDIYEV N, LAHANN J, EMRICH A, et al. Time series classification using deep learning for process planning:a case from the process industry[J]. Procedia Computer Science, 2017, 114:242-249. [2] DONG F, CHEN S, DEMACHI K, et al. Attention-based time series analysis for data-driven anomaly detection in nuclear power plants[J]. Nuclear Engineering and Design, 2023, 404:112161. [3] ROCHETEAU E, LIÒ P, HYLAND S. Predicting length of stay in the intensive care unit with temporal pointwise convolutional networks[EB/OL].[2023-11-25] . https://arxiv.org/abs/2006.16109v1. [4] 田红丽,崔姚,闫会强.融合图卷积和卷积自注意力的股票预测方法[J].计算机工程与应用, 2024, 60(4):192-199. TIAN H L, CUI Y, YAN H Q. Stock prediction method combining graph convolution and convolution self-attention[J]. Computer Engineering and Applications, 2024, 60(4):192-199.(in Chinese) [5] GROSSI E, VALBUSA G, BUSCEMA M. Detection of an autism EEG signature from only two EEG channels through features extraction and advanced machine learning analysis[J]. Clinical EEG and Neuroscience, 2021, 52(5):330-337. [6] 詹熙,黎维,潘志松. Multi-shapelet:一种基于shapelet的多变量时间序列分类方法[J].数据采集与处理, 2023, 38(2):386-400. ZHAN X, LI W, PAN Z S. Multi-shapelet:a multivariate time series classification method based on shapelet[J]. Journal of Data Acquisition and Processing, 2023, 38(2):386-400.(in Chinese) [7] SCHÄFER P, LESER U. Multivariate time series classification with WEASEL+MUSE[EB/OL].[2023-11-25] . https://arxiv.org/pdf/1711.11343. [8] LI G, CHOI B, XU J, et al. ShapeNet:a shapelet-neural network approach for multivariate time series classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. California, USA:AAAI Press, 2021:8375-8383. [9] BAGNALL A, DAU H A, LINES J, et al. The UEA multivariate time series classification archive, 2018[EB/OL].[2023-11-25] . https://arxiv.org/pdf/1811.00075.pdf. [10] SHOKOOHI-YEKTA M, WANG J, KEOGH E. On the non-trivial generalization of dynamic time warping to the multi-dimensional case[C]//Proceedings of the 2015 SIAM International Conference on Data Mining (SDM). Philadelphia, USA:Society for Industrial and Applied Mathematics, 2015:289-297. [11] SHOKOOHI-YEKTA M, HU B, JIN H X, et al. Generalizing DTW to the multi-dimensional case requires an adaptive approach[J]. Data Mining and Knowledge Discovery, 2017, 31(1):1-31. [12] 沈彧,陈庆奎.面向时间序列相似性的疾病风险评估模型[J].小型微型计算机系统, 2022, 43(9):1869-1876. SHEN Y, CHEN Q K. Disease risk assessment model based on similarity measurement of multivariate time series[J]. Journal of Chinese Computer Systems, 2022, 43(9):1869-1876.(in Chinese) [13] ZHENG Y, LIU Q, CHEN E H, et al. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification[J]. Frontiers of Computer Science, 2016, 10(1):96-112. [14] KARIM F, MAJUMDAR S, DARABI H, et al. Multivariate LSTM-FCNs for time series classification[J]. Neural Networks, 2019, 116:237-245. [15] ISMAIL FAWAZ H, LUCAS B, FORESTIER G, et al. Inceptiontime:finding AlexNet for time series classification[EB/OL].[2023-11-25] . https://arxiv.org/pdf/1909.04939.pdf. [16] ZHANG X C, GAO Y F, LIN J, et al. TapNet:multivariate time series classification with attentional prototypical network[C]//Proceedings of the AAAI Conference on Artificial Intelligence. California, USA:AAAI Press, 2020:6845-6852. [17] 霍纬纲,侯振环.基于多尺度卷积自注意力的多维时间序列预测[J].计算机工程与设计, 2023, 44(4):1250-1258. HUO W G, HOU Z H. Multivariate time series forecasting using multi-scale convolutional self-attention[J]. Computer Engineering and Design, 2023, 44(4):1250-1258.(in Chinese) [18] 刘杭,殷歆,陈杰,等.基于混合网络模型的多维时间序列预测[J].计算机工程, 2023, 49(1):121-129. LIU H, YIN X, CHEN J, et al. Multi-dimensional time-series prediction based on hybrid network models[J]. Computer Engineering, 2023, 49(1):121-129.(in Chinese) [19] 王慧强,陈楚皓,吕宏武,等.基于双向稀疏Transformer的多变量时序分类模型[J].小型微型计算机系统, 2024, 45(3):555-561. WANG H Q, CHEN C H, LV H W, et al. Multivariate time series classification model based on bidirectional sparse Transformer[J]. Journal of Chinese Computer Systems, 2024, 45(3):555-561.(in Chinese) [20] WU H X, WU J L, XU J H, et al. Flowformer:linearizing Transformers with conservation flows[EB/OL].[2023-11-25] . https://arxiv.org/abs/2202.06258?context=cs.AI. [21] DEMPSTER A, PETITJEAN F, WEBB G I. ROCKET:exceptionally fast and accurate time series classification using random convolutional kernels[J]. Data Mining and Knowledge Discovery, 2020, 34(5):1454-1495. [22] MUNIR M, SIDDIQUI S A, DENGEL A, et al. DeepAnT:a deep learning approach for unsupervised anomaly detection in time series[J]. IEEE Access, 2019, 7:1991-2005. [23] ZHOU Y J, XU K, HE F, et al. Application of time series data anomaly detection based on deep learning in continuous casting process[J]. ISIJ International, 2022, 62(4):689-698. [24] MA M, SUN C, CHEN X F. Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3):1137-1145. [25] CHOWDHURY R R, ZHANG X, SHANG J, et al. TARNet:task-aware reconstruction for time-series Transformer[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2022:212-220. [26] 邓昕,刘朝晖,欧阳燕,等.基于CNN CBAM-BiGRU Attention的加密恶意流量识别[J].计算机工程, 2023, 49(11):178-186. DENG X, LIU Z H, OU Y Y, et al. Encrypted malicious traffic identification based on CNN CBAM-BiGRU attention[J]. Computer Engineering, 2023, 49(11):178-186.(in Chinese) [27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2007:6000-66010. [28] TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-Mixer:an all-MLP architecture for vision[EB/OL].[2023-11-25] . https://arxiv.org/abs/2105.01601. [29] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding gaussian mixture model for unsupervised anomaly detection[EB/OL].[2023-11-25] . https://openreview.net/pdf?id=BJJLHbb0-. [30] LENG Z Q, TAN M X, LIU C X, et al. PolyLoss:a polynomial expansion perspective of classification loss functions[EB/OL].[2023-11-25] . https://arxiv.org/abs/2204.12511. [31] DEMPSTER A, SCHMIDT D F, WEBB G I. MiniRocket:a very fast (almost) deterministic transform for time series classification[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2021:248-257. [32] GAO G, GAO Q, YANG X, et al. A reinforcement learning-informed pattern mining framework for multivariate time series classification[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence. California, USA:IJCAI, 2022:2994-3000. [33] 李守华,李俊.汽车用高强度IF钢的研究进展[J].上海金属, 2007, 5:66-70. LI S H, LI J. Progress in research of high strength IF steel for automotive applications[J]. Shanghai Metals, 2007, 5:66-70.(in Chinese) |