1 |
YE D Y, ZHANG M J, YANG Y. A multi-agent framework for packet routing in wireless sensor networks. Sensors, 2015, 15 (5): 10026- 10047.
doi: 10.3390/s150510026
|
2 |
WANG H S, GUO D J, LIANG X W, et al. Adaptive vision-based leader-follower formation control of mobile robots. IEEE Transactions on Industrial Electronics, 2016, 64 (4): 2893- 2902.
doi: 10.1109/TIE.2016.2631514
|
3 |
赵学远, 周绍磊, 王帅磊, 等. 基于多无人机系统的编队包含控制. 计算机工程, 2020, 46 (8): 284- 289.
doi: 10.19678/j.issn.1000-3428.0055224
|
|
ZHAO X Y, ZHOU S L, WANG S L, et al. Formation containment control based on multiple unmanned aerial vehicle system. Computer Engineering, 2020, 46 (8): 284- 289.
doi: 10.19678/j.issn.1000-3428.0055224
|
4 |
LIU G P, ZHANG S J. A survey on formation control of small satellites. Proceedings of the IEEE, 2018, 106 (3): 440- 457.
doi: 10.1109/JPROC.2018.2794879
|
5 |
CHEN Q, WANG Y, JIN Y, et al. A survey of an intelligent multi-agent formation control. Applied Sciences, 2023, 13 (34): 1- 10.
|
6 |
刘杨, 刘美杰. 基于领导跟随的欠驱动船舶编队跟踪控制. 控制工程, 2013, 20 (5): 980-983, 989.
doi: 10.3969/j.issn.1671-7848.2013.05.043
|
|
LIU Y, LIU M J. Leader/follower formation control of underactuated surface ships strategy. Control Engineering of China, 2013, 20 (5): 980-983, 989.
doi: 10.3969/j.issn.1671-7848.2013.05.043
|
7 |
FAN J J, LIAO Y L, LI Y, et al. Formation control of multiple unmanned surface vehicles using the adaptive null-space-based behavioral method. IEEE Access, 2019, 7, 87647- 87657.
doi: 10.1109/ACCESS.2019.2925466
|
8 |
CHEN X, HUANG F H, ZHANG Y G, et al. A novel virtual-structure formation control design for mobile robots with obstacle avoidance. Applied Sciences, 2020, 10 (17): 5807.
doi: 10.3390/app10175807
|
9 |
ZHEN Q Z, WAN L, LI Y L, et al. Formation control of a multi-AUVs system based on virtual structure and artificial potential field on SE (3). Ocean Engineering, 2022, 253, 111148.
doi: 10.1016/j.oceaneng.2022.111148
|
10 |
LIU L, PERC M, CAO J D. Aperiodically intermittent stochastic stabilization via discrete time or delay feedback control. Science China(Information Sciences), 2019, 62 (7): 183- 195.
|
11 |
ZHU J H, WEN G X, LI B. Decentralized adaptive formation control based on sliding mode strategy for a class of second-order nonlinear unknown dynamic multi-agent systems. International Journal of Adaptive Control and Signal Processing, 2022, 36 (4): 1045- 1058.
doi: 10.1002/acs.3381
|
12 |
DONG L J, CHAI S C, ZHANG B H, et al. Sliding mode control for multi-agent systems under a time-varying topology. International Journal of Systems Science, 2016, 47 (9): 2193- 2200.
doi: 10.1080/00207721.2014.979335
|
13 |
NAIR R R, BEHERA L, KUMAR S. Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances. IEEE Transactions on Control Systems Technology, 2017, 27 (1): 39- 47.
|
14 |
BAI J, WEN G G, RAHMANI A, et al. Consensus for the fractional-order double-integrator multi-agent systems based on the sliding mode estimator. IET Control Theory & Applications, 2018, 12 (5): 621- 628.
|
15 |
NGUYEN N P, PARK D, NGOC D N, et al. Quadrotor formation control via terminal sliding mode approach: theory and experiment results. Drones, 2022, 6 (7): 172.
|
16 |
YU S H, LONG X J. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica, 2015, 54, 158- 165.
doi: 10.1016/j.automatica.2015.02.001
|
17 |
PARK D J, MOON J W, HAN S I. Finite-time sliding mode controller design for formation control of multi-agent mobile robots. The Journal of Korea Robotics Society, 2017, 12 (3): 339- 349.
doi: 10.7746/jkros.2017.12.3.339
|
18 |
ZHAO L, YU J P, LIN C, et al. Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode. Applied Mathematics and Computation, 2017, 312, 23- 35.
doi: 10.1016/j.amc.2017.05.049
|
19 |
ZHANG J, YU S, YAN Y. Fixed-time velocity-free sliding mode tracking control for marine surface vessels with uncertainties and unknown actuator faults. Ocean Engineering, 2020, 201, 107107.
|
20 |
YANG X W, FAN X P, LONG F, et al. Predefined-time robust control with formation constraints and saturated controls. nonlinear dynamics. Nonlinear Dynamics, 2022, 110 (3): 2535- 2554.
|
21 |
WANG Y J, SONG Y D, HILL D J, et al. Prescribed-time consensus and containment control of networked multiagent systems. IEEE Transactions on Cybernetics, 2018, 49 (4): 1138- 1147.
doi: 10.1109/TCYB.2017.2788874
|
22 |
ZHOU Y, LIU Y F, ZHAO Y. Prescribed-time bipartite consensus formation control for general linear multi-agent systems[C]//Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society. Washington D. C., USA: IEEE Press, 2020: 3562-3567.
|
23 |
REN Y, ZHOU W, LI Z, et al. Prescribed-time leader-following consensus for stochastic second-order multi-agent systems subject to actuator failures via sliding mode control strategy. Neurocomputing, 2021, 425, 82- 95.
|
24 |
LI X, YU Z Y, JIANG H J. Event-triggered fixed-time integral sliding mode control for nonlinear multi-agent systems with disturbances. Entropy, 2021, 23 (11): 1412.
|
25 |
LU Q, HAN Q L, ZHONG C L, et al. Finite-time consensus analysis under directed communication topologies for multi-agent systems[C]//Proceedings of the 20th World Congress IFAC. Washington D. C., USA: IEEE Press, 2017: 619-624,
|
26 |
WANG J R, LUO X Y, LI X L, et al. Sliding mode formation control of nonlinear multi-agent systems with local Lipschitz continuous dynamics. Journal of Systems Science and Complexity, 2019, 32 (3): 759- 777.
doi: 10.1007/s11424-018-7299-1
|