1 |
TJONG KIM SANG E F, DE MEULDER F. Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[C]//Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003. [S. l. ]: Association for Computational Linguistics, 2003: 142-147.
|
2 |
HUANG S B, SHA Y P, LI R S. A Chinese named entity recognition method for small-scale dataset based on lexicon and unlabeled data. Multimedia Tools and Applications, 2023, 82(2): 2185- 2206.
doi: 10.1007/s11042-022-13377-y
|
3 |
|
4 |
ZHU Y, WANG G. CAN-NER: convolutional attention network for Chinese named entity recognition[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2019: 3384-3393.
|
5 |
CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics, 2016, 4, 357- 370.
doi: 10.1162/tacl_a_00104
|
6 |
SAITO K, NAGATA M. Multi-language named-entity recognition system based on HMM[C]//Proceedings of ACL 2003 Workshop on Multilingual and Mixed-Language Named Entity Recognition. [S. l. ]: Association for Computational Linguistics, 2003: 41-48.
|
7 |
FENG Y, SUN L, LV Y. Chinese word segmentation and named entity recognition based on conditional random fields models[C]//Proceedings of the 5th SIGHAN Workshop on Chinese Language Processing. [S. l. ]: Association for Computational Linguistics, 2006: 181-184.
|
8 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2019: 4171-4186.
|
9 |
CUI Y M, CHE W X, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. [S. l. ]: Association for Computational Linguistics, 2020: 657-668.
|
10 |
LI D, LONG J, QU J, et al. Chinese clinical named entity recognition with ALBERT and MHA mechanism. Evidence-Based Complementary and Alternative Medicine, 2022, 2022, 2056039.
|
11 |
张付领. 结合ERNIE2.0的医疗中文命名实体识别模型. 电子设计工程, 2023, 31(4): 38- 42.
|
|
ZHANG F L. Medical Chinese named entity recognition model combined with ERNIE2.0. Electronic Design Engineering, 2023, 31(4): 38- 42.
|
12 |
|
13 |
|
14 |
LIU S, YANG H, LI J Y, et al. Chinese named entity recognition method in history and culture field based on BERT. International Journal of Computational Intelligence Systems, 2021, 14(1): 163.
doi: 10.1007/s44196-021-00019-8
|
15 |
ZHAO Z, YANG Z, LUO L, et al. Disease named entity recognition from biomedical literature using a novel convolutional neural network. BMC Medical Genomics, 2017, 10(5): 73.
|
16 |
AGUILAR G, MAHARJAN S, LÓPEZ MONROY A P, et al. A multi-task approach for named entity recognition in social media data[C]//Proceedings of the 3rd Workshop on Noisy User-generated Text. [S. l. ]: Association for Computational Linguistics, 2017: 148-153.
|
17 |
YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. [S. l. ]: Association for Computational Linguistics, 2016: 1480-1489.
|
18 |
LIU W, FU X Y, ZHANG Y, et al. Lexicon enhanced Chinese sequence labeling using BERT adapter[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2021: 5847-5858.
|
19 |
LARSEN B, AONE C. Fast and effective text mining using linear-time document clustering[C]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 1999: 16-22.
|
20 |
MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2020: 5951-5960.
|
21 |
LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2020: 6836-6842.
|
22 |
|
23 |
CAO P F, CHEN Y B, LIU K, et al. Adversarial transfer learning for Chinese named entity recognition with self-attention mechanism[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2018: 182-192.
|
24 |
YASUNAGA M, KASAI J, RADEV D. Robust multilingual part-of-speech tagging via adversarial training[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. [S. l. ]: Association for Computational Linguistics, 2018: 976-986.
|
25 |
|
26 |
|
|
SU J L. Speed up without dropping points: Chinese WoBERT based on word granularity[EB/OL]. [2023-07-05]. http://kexue.fm/archives/7758. (in Chinese)
|
27 |
GUI T, ZOU Y C, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2019: 1040-1050.
|
28 |
GUI T, MA R T, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. [S. l. ]: Association for Computational Linguistics, 2019: 4982-4988.
|
29 |
|
30 |
ZHU E W, LI J P. Boundary smoothing for named entity recognition[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2022: 7096-7108.
|
31 |
于右任, 张仰森, 蒋玉茹, 等. 融合多粒度语言知识与层级信息的中文命名实体识别模型. 计算机应用, 2024, 44(6): 1706- 1712.
|
|
YU Y R, ZHANG Y S, JIANG Y R, et al. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information. Journal of Computer Applications, 2024, 44(6): 1706- 1712.
|
32 |
杨长沛, 廖列法. 基于门控空洞卷积特征融合的中文命名实体识别. 计算机工程, 2023, 49(8): 85- 95.
doi: 10.19678/j.issn.1000-3428.0065455
|
|
YANG C P, LIAO L F. Chinese named entity recognition based on dilated gated convolution feature fusion. Computer Engineering, 2023, 49(8): 85- 95.
doi: 10.19678/j.issn.1000-3428.0065455
|
33 |
廖梦, 贾真, 李天瑞. 基于标签信息融合与多任务学习的中文命名实体识别[J]. 计算机科学, 2024, 51(3): 198-204.
|
|
LIAO M, JIA Z, LI T R. Chinese named entity recognition based on label information fusion and multi-task learning[J]. Computer Science, 2024, 51(3): 198-204. (in Chinese)
|
34 |
王庆人, 王银子, 仲红, 等. 面向中文的字词组合序列实体识别方法. 清华大学学报(自然科学版), 2023, 63(9): 1326- 1338.
|
|
WANG Q R, WANG Y Z, ZHONG H, et al. Chinese-oriented entity recognition method of character vocabulary combination sequence. Journal of Tsinghua University (Science and Technology), 2023, 63(9): 1326- 1338.
|