1 |
张增超, 李强, 孙红雨, 等. 基于地磁传感器和UWB技术的停车位车辆检测方法与实现. 传感技术学报, 2019, 32 (12): 1917- 1922.
URL
|
|
ZHANG Z C, LI Q, SUN H Y, et al. Parking vehicle detection method and implementation based on geomagnetic sensor and UWB technology. Chinese Journal of Sensors and Actuators, 2019, 32 (12): 1917- 1922.
URL
|
2 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
URL
|
|
LI S J, GENG L L, WANG P. Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
URL
|
3 |
|
4 |
|
|
|
5 |
|
6 |
杨祖莨, 丁洁, 刘晋峰. 一种新的结合卷积神经网络的隧道内停车检测方法. 重庆大学学报, 2021, 44 (6): 49- 59.
URL
|
|
YANG Z L, DING J, LIU J F. A new tunnel vehicle stopping detection methodology combined with convolutional neural network. Journal of Chongqing University, 2021, 44 (6): 49- 59.
URL
|
7 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
8 |
李国进, 胡洁, 艾矫燕. 基于改进SSD算法的车辆检测. 计算机工程, 2022, 48 (1): 266- 274.
URL
|
|
LI G J, HU J, AI J Y. Vehicle detection based on improved SSD algorithm. Computer Engineering, 2022, 48 (1): 266- 274.
URL
|
9 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
10 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV). Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
11 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
12 |
DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2016: 379-387.
|
13 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 386- 397.
doi: 10.1109/TPAMI.2018.2844175
|
14 |
|
15 |
|
16 |
WANG C Y, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-10-19]. https://arxiv.org/abs/2207.02696.
|
17 |
|
18 |
|
19 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
21 |
|
22 |
|
23 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3698141.
|
24 |
|
25 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372
|