作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (4): 11-19. doi: 10.19678/j.issn.1000-3428.0068901

• 智慧交通 • 上一篇    下一篇

基于改进YOLOv8的高速公路服务区车辆违停检测

陈伟1, 王晓龙1, 张晏玮1, 安国成1, 江波2,*()   

  1. 1. 上海华讯网络系统有限公司行业数智事业部, 上海 200127
    2. 中国电子科技集团公司第三十二研究所, 上海 201808
  • 收稿日期:2023-11-07 出版日期:2024-04-15 发布日期:2024-04-11
  • 通讯作者: 江波
  • 基金资助:
    “十四五”国家重点研发计划项目(2023YFC3006700)

Vehicle Violation Detection Based on Improved YOLOv8 in Highway Service Areas

Wei CHEN1, Xiaolong WANG1, Yanwei ZHANG1, Guocheng AN1, Bo JIANG2,*()   

  1. 1. Industry Digital Intelligence Division, ECCOM Network System Co., Ltd., Shanghai 200127, China
    2. The 32nd Research Institute of China Electronics Technology Group Corporation, Shanghai 201808, China
  • Received:2023-11-07 Online:2024-04-15 Published:2024-04-11
  • Contact: Bo JIANG

摘要:

在高速公路服务区违停检测过程中光照、天气变化等复杂环境会使车辆检测精度急剧下降, 同时摄像机拍摄角度、车体高度等因素会增加车辆违停检测的误报率和漏报率。为此, 提出一种基于改进YOLOv8的高速公路服务区违停检测算法。在YOLOv8网络模型的特征金字塔池化层中, 构建膨胀空间金字塔池化(DSPP)模块和基于分支注意力机制的膨胀空间金字塔池化(DSPPA)模块, 减少特征提取网络中深层语义信息的丢失, 同时利用DSPPA中的分支注意力(BA)机制为不同感受野分支特征赋予不同的权重, 使模型更关注与目标尺寸相适应的特征。设计基于全局匹配的停车位分配策略, 有效降低了视角倾斜、车辆重叠遮挡等情况下违规占用停车位的误报率与漏报率。实验结果表明, 改进算法的违停检测误报率从15%下降至8%, 违停检测漏报率从7.5%下降至6.1%, 具有较好的车辆违停检测效果。

关键词: YOLOv8, 车辆检测, 空间金字塔池化, 全局匹配, 车辆违停检测

Abstract:

In highway service areas, complex environments such as lighting and weather changes can cause a sharp decline in vehicle detection accuracy. In addition, factors such as the inclination angle of the camera and the height of installation can increase false-negative and false-positive rates. To this end, a vehicle violation detection algorithm based on the improved YOLOv8 is proposed for highway service areas. First, the feature pyramid pooling layer of the YOLOv8 network, a Dilated Space Pyramid Pooling(DSPP) module, and a DSPP based on branch Attention(DSPPA) module are constructed to reduce the loss of semantic information in the backbone. The Branch Attention(BA) mechanism in DSPPA assigns different weights to the branches with varying degrees of contribution, making the model focus more on features that are suitable for the target size. Second, a parking space allocation strategy based on global matching is designed to effectively reduce the false-negative and false-positive rates of illegal parking detection in situations involving tilted views and overlapping vehicles. The experimental results show that the improved algorithm reduces the false-negative rate of parking violation detection from 15% to 8% and the false-positive rate from 7.5% to 6.1%, demonstrating considerable performance improvement in vehicle violation detection.

Key words: YOLOv8, vehicle detection, Spatial Pyramid Pooling(SPP), global matching, vehicle violation detection