[1] DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2005:886-893. [2] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Washington D.C.,USA:IEEE Press, 1999:1150-1157. [3] SÁNCHEZ A V. Advanced support vector machines and kernel methods[J].Neurocomputing, 2003,55(1):5-20. [4] FERREIRA A J, FIGUEIREDO M A T. Boosting algorithms:a review of methods, theory, and applications[J].Ensemble Machine Learning, 2012, 19(1):35-85. [5] FRIEDMAN J H. Greedy function approximation:a gradient boosting machine[J]. The Annals of Statistics, 2000,29(5):31-39. [6] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J].Nature, 1986,323(6088):533-536. [7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. [8] KONG Tao, YAO Anbang, CHEN Yurong, et al. HyperNet:towards accurate region proposal generation and joint object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press, 2016:845-853. [9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press, 2014:21-28. [10] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2015:32-37. [11] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:63-69. [12] REDMON J,FARHADI A.YOLO9000:better,faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:51-56. [13] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of ECCV'16. Berlin,Germany:Springer,2016:21-37. [14] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2019-08-23].https://www.research-gate.net/publication/324387691_YOLOv3_An_Incremental_Improvement. [15] ZHANG Yangshuo, MIAO Zhuang, WANG Jiabao, et al. Pedestrian detection method based on Movidius neural computing stick[J]. Journal of Computer Applications, 2019, 39(8), 2230-2234. (in Chinese)张洋硕,苗壮,王家宝,等.基于Movidius神经计算棒的行人检测方法[J].计算机应用, 2019,39(8):2230-2234. [16] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:1800-1807. [17] LONG J,SHELHAMER E,DARREL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:640-651. [18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:521-528. [19] WAGSTAFF K, CARDIE C, ROGERS S, et al. Constrained K-means clustering with background knowledge[C]//Proceedings of the 18th International Conference on Machine Learning. New York,USA:ACM Press, 2001:577-584. [20] HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2019-08-23].https://www.researchgate.net/publication/316184205_MobileNets_Efficient_Convolutional_Neural_Networks_for_Mobile_Vision_Applications. |