[1] 李国进, 胡洁, 艾矫燕.基于改进SSD算法的车辆检测[J].计算机工程, 2022, 48(1):266-274. LI G J, HU J, AI J Y.Vehicle detection based on improved SSD algorithm[J].Computer Engineering, 2022, 48(1):266-274.(in Chinese) [2] TIAN D X, ZHANG C, DUAN X T, et al.An automatic car accident detection method based on cooperative vehicle infrastructure systems[J].IEEE Access, 2019, 7:127453-127463. [3] 刘鹏.公路隧道非对称光强空间分布效能分析研究[D].重庆:重庆交通大学, 2020. LIU P.Analysis and research on spatial distribution efficiency of asymmetric light intensity of highway tunnel[D].Chongqing:Chongqing Jiaotong University, 2020.(in Chinese) [4] FENG D, HAASE-SCHÜTZ C, ROSENBAUM L, et al.Deep multi-modal object detection and semantic segmentation for autonomous driving:datasets, methods, and challenges[J].IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3):1341-1360. [5] 黄靖淞, 左颢睿, 张建林.轻量化目标检测算法研究及应用[J].计算机工程, 2021, 47(10):236-241. HUANG J S, ZUO H R, ZHANG J L.Research and application of lightweight object detection algorithm[J].Computer Engineering, 2021, 47(10):236-241.(in Chinese) [6] 李柯泉, 陈燕, 刘佳晨, 等.基于深度学习的目标检测算法综述[J].计算机工程, 2022, 48(7):1-12. LI K Q, CHEN Y, LIU J C, et al.Survey of deep learning-based object detection algorithms[J].Computer Engineering, 2022, 48(7):1-12.(in Chinese) [7] MEKHALFI M L, NICOLÒ C, BAZI Y, et al.Detecting crop circles in Google earth images with Mask R-CNN and YOLOv3[J].Applied Sciences, 2021, 11(5):2238. [8] GAO X W, LI S Q, JIN B Y, et al.Intelligent crack damage detection system in shield tunnel using combination of retinanet and optimal adaptive selection[J].Journal of Intelligent & Fuzzy Systems, 2021, 40(3):4453-4469. [9] HOESER T, KUENZER C.Object detection and image segmentation with deep learning on earth observation data:a review-part I:evolution and recent trends[J].Remote Sensing, 2020, 12(10):1667. [10] HU X W, XU X M, XIAO Y J, et al.SINet:a scale-insensitive convolutional neural network for fast vehicle detection[J].IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3):1010-1019. [11] JU M, LUO H, WANG Z, et al.The application of improved YOLOv3 in multi-scale target detection[J].Applied Sciences, 2019, 9(18):3775. [12] ZHANG Z, XIA S H, CAI Y X, et al.A soft-YoloV4 for high-performance head detection and counting[J].Mathematics, 2021, 9(23):3096. [13] ZHANG S F, WEN L Y, BIAN X, et al.Single-shot refinement neural network for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4203-4212. [14] GUO K, HE C, YANG M, et al.A pavement distresses identification method optimized for YOLOv5s[J].Scientific Reports, 2022, 12:3542. [15] HE K M, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:10-15. [16] PEI D S.A fast RetinaNet fusion framework for multi-spectral pedestrian detection[J].Infrared Physics & Technology, 2020, 105:103178. [17] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [18] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [19] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8759-8768. [20] 李贝贝, 彭力, 戴菲菲.结合马氏距离与自编码器的网络流量异常检测方法[J].计算机工程, 2022, 48(4):133-142. LI B B, PENG L, DAI F F.Abnormal network traffic detection method combining mahalanobis distance and autoencoder[J].Computer Engineering, 2022, 48(4):133-142.(in Chinese) [21] 刘通, 程江华, 华宏虎, 等.结合YdUaVa颜色模型和改进MobileNetV3的视频烟雾检测方法[J].国防科技大学学报, 2021, 43(5):80-85. LIU T, CHENG J H, HUA H H, et al.Video smoke detection method combining YdUaVa color model and improved MobileNetV3[J].Journal of National University of Defense Technology, 2021, 43(5):80-85.(in Chinese) [22] 许德刚, 王露, 李凡.深度学习的典型目标检测算法研究综述[J].计算机工程与应用, 2021, 57(8):10-25. XU D G, WANG L, LI F.Review of typical object detection algorithms for deep learning[J].Computer Engineering and Applications, 2021, 57(8):10-25.(in Chinese) [23] 常青, 韩文, 王清华, 等.改进YOLO轻量化网络的行人检测算法[J].光学技术, 2022, 48(1):80-85. CHANG Q, HAN W, WANG Q H, et al.Pedestrian detection algorithm based on improved YOLO lightweight network[J].Optical Technique, 2022, 48(1):80-85.(in Chinese) [24] 李琳.低光照图像目标检测关键技术研究[D].合肥:合肥工业大学, 2021. LI L.Research on key technology of low illumination image object detection[D].Hefei:Hefei University of Technology, 2021.(in Chinese) [25] 赵恒.基于公路交通场景的低质量图像增强技术研究[D].西安:长安大学, 2021. ZHAO H.Research on low quality image enhancement technology based on road traffic scenes[D].Xi'an:Changan University, 2021.(in Chinese) [26] ZHU X Z, HU H, LIN S, et al.Deformable ConvNets V2:more deformable, better results[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:9300-9308. [27] 周卓峰.基于轻量化YOLO的交通标志检测方法研究[D].西安:长安大学, 2021. ZHOU Z F.Research on traffic sign detection method based on lightweight YOLO[D].Xi'an:Changan University, 2021.(in Chinese) [28] 牟亮, 赵红, 李燕, 等.基于梯度压缩的YOLO v4算法车型识别[J].工程科学学报, 2022, 44(5):940-950. MU L, ZHAO H, LI Y, et al.Vehicle recognition based on gradient compression and YOLO v4 algorithm[J].Chinese Journal of Engineering, 2022, 44(5):940-950.(in Chinese) [29] 江金洪, 鲍胜利, 史文旭, 等.基于YOLO v3算法改进的交通标志识别算法[J].计算机应用, 2020, 40(8):2472-2478. JIANG J H, BAO S L, SHI W X, et al.Improved traffic sign recognition algorithm based on YOLO v3 algorithm[J].Journal of Computer Applications, 2020, 40(8):2472-2478.(in Chinese) |