[1] 刘振渤,李慧,刘桥缘,等.基于改进YOLOv5的交通标志小目标检测算法[J].现代信息科技, 2024, 8(1):94-98, 103. LIU Z B, LI H, LIU Q Y, et al. Traffic sign small target detection algorithm based on improved YOLOv5[J]. Modern Information Technology, 2024, 8(1):94-98, 103.(in Chinese) [2] 徐鑫,方凯.基于改进YOLOv5的小目标交通标志检测算法[J].湖北汽车工业学院学报, 2023, 37(4):17-21. XU X, FANG K. Small target traffic sign detection algorithm based on improved YOLOv5[J]. Journal of Hubei University of Automotive Industry, 2023, 37(4):17-21.(in Chinese) [3] 李孟歆,李易营,李松昂.一种改进的YOLOv5小目标交通标志检测方法[J].计算机仿真, 2023, 40(10):152-156, 161. LI M X, LI Y Y, LI S A. Improved small target traffic sign detection algorithm based on YOLOv5[J]. Computer Simulation, 2023, 40(10):152-156, 161.(in Chinese) [4] 陈春辉,马社祥.基于新型算子采样优化的交通标志检测网络[J].计算机工程, 2022, 48(10):306-312. CHEN C H, MA S X. Traffic sign detection network based on new operator sampling optimization[J]. Computer Engineering, 2022, 48(10):306-312.(in Chinese) [5] MANZARI O N, BOUDESH A, SHOKOUHI S B. Pyramid transformer for traffic sign detection[C]//Proceedings of the 12th International Conference on Computer and Knowledge Engineering. Washington D. C., USA:IEEE Press, 2022:112-116. [6] 张永亮,陆阳,朱芜强,等.基于多尺度特征提取与特征融合的交通标志检测[J].计算机工程, 2022, 48(10):270-278, 287. ZHANG Y L, LU Y, ZHU W Q, et al. Traffic sign detection based on multi-scale feature extraction and feature fusion[J]. Computer Engineering, 2022, 48(10):270-278, 287.(in Chinese) [7] TABERNIK D, SKOCAJ D. Deep learning for large-scale traffic-sign detection and recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4):1427-1440. [8] 徐迪红.复杂背景下的交通标志检测和分类算法研究[D].武汉:武汉大学, 2010. XU D H. Research on traffic sign detection and classification algorithm under complex background[D]. Wuhan:Wuhan University, 2010.(in Chinese) [9] CHEN T Y, REN J T. MFL-YOLO:an object detection model for damaged traffic signs[EB/OL].[2023-11-10] . https://arxiv.org/abs/2309.06750. [10] 曾雷鸣,侯进,陈子锐,等.基于弱语义分割的轻量化交通标志检测网络[J].计算机工程, 2022, 48(9):269-276, 285. ZENG L M, HOU J, CHEN Z R, et al. Lightweight traffic sign detection network based on weak semantic segmentation[J]. Computer Engineering, 2022, 48(9):269-276, 285.(in Chinese) [11] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:3325-3336. [12] LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2022:578-589. [13] WANG J W, XU C, YANG W, et al. A normalized Gaussian wasserstein distance for tiny object detection[EB/OL].[2023-11-10] . https://arxiv.org/abs/2110.13389v1. [14] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:4510-4520. [15] CHEN J R, KAO S H, HE H, et al. Run, don't walk:chasing higher FLOPs for faster neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:12021-12031. [16] LI Y X, HOU Q B, ZHENG Z H, et al. Large selective kernel network for remote sensing object detection[EB/OL].[2023-11-10] . https://arxiv.org/abs/2303.09030v2. [17] WANG A, CHEN H, LIN Z J, et al. RepViT:revisiting mobile CNN from ViT perspective[EB/OL].[2023-11-10] . https://arxiv.org/abs/2307.09283v8. [18] LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT:memory efficient vision transformer with cascaded group attention[C]//Proceedings of IEEE/CVF Conferenceon Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:14420-14430. [19] WOO S, DEBNATH S, HU R H, et al. ConvNeXt V2:co-designing and scaling ConvNets with masked autoencoders[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:16133-16142. [20] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2023-11-10] . https://arxiv.org/abs/1804.02767. [21] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2023:7464-7475. [22] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2016:21-37. [23] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2017:2980-2988. [24] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [25] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2023-11-10] . https://arxiv.org/abs/2004.10934v1. [26] PANG J M, CHEN K, SHI J P, et al. Libra R-CNN:towards balanced learning for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2019:821-830. [27] ZHANG H K, CHANG H, MA B P, et al. Dynamic R-CNN:towards high quality object detection via dynamic training[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2020:260-275. |