[1] WANG Y Y, SONG K C, LIU J, et al. RENet:rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks[J]. Measurement, 2021, 170:108698. [2] LI B, WANG K C, ZHANG A, et al. Automatic classification of pavement crack using deep convolutional neural network[J]. International Journal of Pavement Engineering, 2020, 21(4):457-463. [3] 郝巨鸣,杨景玉,韩淑梅,等.引入Ghost模块和ECA的YOLOv4公路路面裂缝检测方法[J].计算机应用, 2023, 43(4):1284-1290. HAO J M, YANG J Y, HAN S M, et al. YOLOv4 highway pavement crack detection method using Ghost module and ECA[J]. Journal of Computer Applications, 2023, 43(4):1284-1290.(in Chinese) [4] DU Y C, ZHONG S, FANG H Y, et al. Modeling automatic pavement crack object detection and pixel-level segmentation[J]. Automation in Construction, 2023, 150:104840. [5] SHOLEVAR N, GOLROO A, ESFAHANI S R. Machine learning techniques for pavement condition evaluation[J]. Automation in Construction, 2022, 136:104190. [6] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5:improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2021:2778-2788. [7] 李鹏程,孙立双,谢志伟,等.基于改进MobileNet-SSD的路面裂缝图像检测算法[J].激光杂志, 2022, 43(7):123-127. LI P C, SUN L S, XIE Z W, et al. Improved pavement crack image detection algorithm based on MobileNet-SSD[J]. Laser Journal, 2022, 43(7):123-127.(in Chinese) [8] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL].[2023-09-10] . https://arxiv.org/abs/2207.02696v1. [9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2017:2980-2988. [10] TAN M X, PANG R M, LE Q V. EfficientDet:scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2020:10781-10790. [11] CHEN Z H, YANG C, LI Q F, et al. Disentangle your dense object detector[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA:ACM Press, 2021:4939-4948. [12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [13] MA D, FANG H Y, WANG N N, et al. Automatic detection and counting system for pavement cracks based on PCGAN and YOLO-MF[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):22166-22178. [14] ALI R, CHUAH J H, ABU TALIP M S, et al. Structural crack detection using deep convolutional neural networks[J]. Automation in Construction, 2022, 133:103989. [15] YAO H, LIU Y, LI X, et al. A detection method for pavement cracks combining object detection and attention mechanism[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):22179-22189. [16] 廖延娜,李婉.基于卷积神经网络的桥梁裂缝检测方法[J].计算机工程与设计, 2021, 42(8):2366-2372. LIAO Y N, LI W. Bridge crack detection method based on convolution neural network[J]. Computer Engineering and Design, 2021, 42(8):2366-2372.(in Chinese) [17] LI R X, YU J Y, LI F, et al. Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN[J]. Construction and Building Materials, 2023, 362:129659. [18] 袁磊,唐海,陈彦蓉,等.改进YOLOv5的复杂环境道路目标检测方法[J].计算机工程与应用, 2023, 59(16):212-222. YUAN L, TANG H, CHEN Y R, et al. Improved YOLOv5 for road target detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(16):212-222.(in Chinese) [19] HOU Y, LIU S, CAO D, et al. A deep learning method for pavement crack identification based on limited field images[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):22156-22165. [20] WANG Q L, WU B G, ZHU P F, et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2020:358-366. [21] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2021:13713-13722. [22] HUANG J R, SHEN Q, WANG M, et al. Multiple attention Siamese network for high-resolution image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3127580. [23] 谌婷婷,魏怡.基于改进YOLOv4的混凝土裂缝检测方法[J].激光杂志, 2024:45(1):80-85. CHEN T T, WEI Y. Concrete crack detection method based on improved YOLOv4[J]. Laser Journal, 2024:45(1):80-85.(in Chinese) [24] WANG J K, HE X H, SHAO F M, et al. A real-time bridge crack detection method based on an improved inception-resnet-v2 structure[J]. IEEE Access, 2021, 9:93209-93223. [25] YU Z W, SHEN Y G, SHEN C K. A real-time detection approach for bridge cracks based on YOLOv4-FPM[J]. Automation in Construction, 2021, 122:103514. |