作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (2): 139-148. doi: 10.19678/j.issn.1000-3428.0069028

• 人工智能与模式识别 • 上一篇    下一篇

基于k核分解的网络嵌入

张和平1, 张和贵2, 谢晓尧1, 张太华3, 张思聪1, 喻国军1,*()   

  1. 1. 贵州师范大学贵州省信息与计算科学重点实验室, 贵州 贵阳 550001
    2. 西南财经大学工商管理学院, 四川 成都 611130
    3. 贵州师范大学机械与电气工程学院, 贵州 贵阳 550025
  • 收稿日期:2023-12-14 出版日期:2025-02-15 发布日期:2024-05-07
  • 通讯作者: 喻国军
  • 基金资助:
    国家自然科学基金(72061006); 贵州省科技计划项目(黔科合支撑[2023]一般449); 贵州师范大学学术新苗基金(黔师新苗[2021]A30号)

Network Embedding Based on k-core Decomposition

ZHANG Heping1, ZHANG Hegui2, XIE Xiaoyao1, ZHANG Taihua3, ZHANG Sicong1, YU Guojun1,*()   

  1. 1. Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University, Guiyang 550001, Guizhou, China
    2. School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, Sichuan, China
    3. School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550025, Guizhou, China
  • Received:2023-12-14 Online:2025-02-15 Published:2024-05-07
  • Contact: YU Guojun

摘要:

近年来, 网络嵌入技术受到了广大研究者的关注。不过大多数网络嵌入算法并未考虑到处于相同层级结构的节点间的结构相似性, 这些节点在网络中通常具有相同的重要性。因此, 提出一种基于网络层级结构的网络嵌入算法, 称为KCNE。KCNE算法使用网络节点间的层级结构信息来保持节点之间的结构相似性。该算法首先基于k核(k-core)分解方法将网络中的节点划分为不同的层级, 并且使用定制的随机游走方法为每个节点生成游走序列, 该序列可以有效捕获节点的一阶邻域及处于同层级中的高阶相似节点, 随后将游走序列输入到Skip-gram模型中, 使学习到的节点表示具有更好的区分性。基于多个真实数据集的实验结果表明, 在链路预测和节点分类任务上, KCNE算法相比于8个基准算法中的次优算法性能提升最高分别约4%和5%。参数敏感性分析实验也表明了KCNE算法具有较好的鲁棒性。此外, 该算法在运行效率方面均优于Role2Vec、RARE和GEMSEC算法。

关键词: 网络嵌入, 结构相似性, 随机游走, 链路预测, 节点分类

Abstract:

In recent years, network embedding technology has attracted considerable attention from researchers. However, most network embedding algorithms have not adequately addressed the structural similarity among nodes within the same hierarchical level, even though these nodes typically share similar importance within the network. Therefore, this paper proposes a network embedding algorithm based on the hierarchical structure of a network, called KCNE. The KCNE algorithm utilizes hierarchical structural information among network nodes to preserve the structural similarity between nodes. Specifically, the algorithm initially employs the k-core decomposition method to categorize the nodes in the network into different levels. Subsequently, a customized random walk method is employed to generate a random walk sequence for each node. This sequence effectively captures the first-order neighborhood of nodes and high-order similar nodes within the same level. The generated random walk sequences are then input into a Skip-gram model to ensure that the learned node representations possess enhanced discriminative capabilities. Finally, experimental results on multiple real datasets demonstrate that, in link prediction and node classification tasks, the KCNE algorithm outperforms the second-best algorithm among eight benchmark algorithms by approximately 4% and 5%, respectively. Sensitivity analysis experiments further confirm the superior robustness of the KCNE algorithm. Additionally, the algorithm exhibits superior efficiency compared to the Role2Vec, RARE, and GEMSEC algorithms.

Key words: network embedding, structural similarity, random walk, link prediction, node classification