1 |
ZHANG H G , CHEN X L , PENG Y , et al. The interaction of multiple information on multiplex social networks. Information Sciences, 2022, 605, 366- 380.
doi: 10.1016/j.ins.2022.05.036
|
2 |
白明昌. 基于折叠路径聚合的属性网络节点嵌入方法. 计算机工程, 2023, 49 (7): 76- 84.
doi: 10.19678/j.issn.1000-3428.0064318
|
|
BAI M C . Node embedding method based on folded path aggregation on attributed network. Computer Engineering, 2023, 49 (7): 76- 84.
doi: 10.19678/j.issn.1000-3428.0064318
|
3 |
KAZIENKO P , KAJDANOWICZ T . Label-dependent node classification in the network. Neurocomputing, 2012, 75 (1): 199- 209.
doi: 10.1016/j.neucom.2011.04.047
|
4 |
KUMAR A , SINGH S S , SINGH K , et al. Link prediction techniques, applications, and performance: a survey. Physica A-Statistical Mechanics and Its Applications, 2020, 553, 124289.
doi: 10.1016/j.physa.2020.124289
|
5 |
PIO G , CECI M , PRISCIANDARO F , et al. Exploiting causality in gene network reconstruction based on graph embedding. Machine Learning, 2020, 109 (6): 1231- 1279.
doi: 10.1007/s10994-019-05861-8
|
6 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710. 10.1145/2623330.2623732
|
7 |
|
8 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 855-864. 10.1145/2939672.2939754
|
9 |
TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 10.1145/2736277.2741093
|
10 |
KEIKHA M M , RAHGOZAR M , ASADPOUR M . Community aware random walk for network embedding. Knowledge-Based Systems, 2018, 148, 47- 54.
doi: 10.1016/j.knosys.2018.02.028
|
11 |
GUO K , WANG Q Z , LIN J Q , et al. Network representation learning based on community-aware and adaptive random walk for overlapping community detection. Applied Intelligence, 2022, 52 (9): 9919- 9937.
doi: 10.1007/s10489-021-02999-8
|
12 |
|
13 |
ZHANG H G , KOU G , PENG Y , et al. Role-aware random walk for network embedding. Information Sciences, 2024, 652, 119765.
doi: 10.1016/j.ins.2023.119765
|
14 |
GUO X , JIAO P F , ZHANG W , et al. Representation learning on heterostructures via heterogeneous anonymous walks. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (7): 9538- 9552.
doi: 10.1109/TNNLS.2023.3234005
|
15 |
JIANG J Y, LI Z Y, JU C J T, et al. MARU: meta-context aware random walks for heterogeneous network representation learning[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 575-584.
|
16 |
LI X , WEI W , ZHANG R Z , et al. Representation learning of enhanced graphs using random walk graph convolutional network. ACM Transactions on Intelligent Systems and Technology, 2023, 14 (3): 1- 21.
doi: 10.1145/3582841
|
17 |
ZHANG Y Y , SHI Z , FENG D , et al. Degree-biased random walk for large-scale network embedding. Future Generation Computer Systems, 2019, 100, 198- 209.
doi: 10.1016/j.future.2019.05.033
|
18 |
LIU Q , SHU H , YUAN M , et al. Fuzzy hierarchical network embedding fusing structural and neighbor information. Information Sciences, 2022, 603, 130- 148.
doi: 10.1016/j.ins.2022.04.042
|
19 |
焦鹏飞, 潘婷, 金弟, 等. 角色导向的网络表示学习综述. 计算机学报, 2023, 46 (2): 274- 303.
doi: 10.11897/SP.J.1016.2023.00274
|
|
JIAO P F , PAN T , JIN D , et al. A survey on role-guided network representation learning. Chinese Journal of Computers, 2023, 46 (2): 274- 303.
doi: 10.11897/SP.J.1016.2023.00274
|
20 |
DUONG C T , NGUYEN T T , HOANG T D , et al. Deep MinCut: learning node embeddings by detecting communities. Pattern Recognition, 2023, 134, 109126.
doi: 10.1016/j.patcog.2022.109126
|
21 |
TU C C , ZENG X K , WANG H , et al. A unified framework for community detection and network representation learning. IEEE Transactions on Knowledge and Data Engineering, 2019, 31 (6): 1051- 1065.
doi: 10.1109/TKDE.2018.2852958
|
22 |
WANG X , CUI P , WANG J , et al. Community preserving network embedding. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 203- 209.
doi: 10.1609/aaai.v31i1.10488
|
23 |
ROZEMBERCZKI B, DAVIES R, SARKAR R, et al. GEMSEC: graph embedding with self clustering[C]//Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York, USA: ACM Press, 2020: 65-72. 10.1145/3341161.3342890
|
24 |
吕少卿, 赵雪莉, 张潘, 等. 一种保留社区结构信息的网络嵌入算法. 计算机工程, 2021, 47 (12): 122- 130.
doi: 10.19678/j.issn.1000-3428.0059448
|
|
LV S Q , ZHAO X L , ZHANG P , et al. A network embedding algorithm preserving community structure information. Computer Engineering, 2021, 47 (12): 122- 130.
doi: 10.19678/j.issn.1000-3428.0059448
|
25 |
李亚芳, 梁烨, 冯韦玮, 等. 基于社区优化的深度网络嵌入方法. 计算机应用, 2021, 41 (7): 1956- 1963.
doi: 10.11772/j.issn.1001-9081.2020081193
|
|
LI Y F , LIANG Y , FENG W W , et al. Deep network embedding method based on community optimization. Journal of Computer Applications, 2021, 41 (7): 1956- 1963.
doi: 10.11772/j.issn.1001-9081.2020081193
|
26 |
MA X W, QIN G, QIU Z Y, et al. RiWalk: fast structural node embedding via role identification[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D. C., USA: IEEE Press, 2019: 478-487. 10.1109/ICDM.2019.00058
|
27 |
ZHANG H G, KOU G. Role-based multiplex network embedding[C]//Proceedings of the 39th International Conference on Machine Learning. New York, USA: PMLR, 2022: 26265-26280.
|
28 |
WANG X , JIAN S L , LU K , et al. RED: learning the role embedding in networks via discrete-time quantum walk. Applied Intelligence, 2022, 52 (2): 1493- 1507.
doi: 10.1007/s10489-021-02342-1
|
29 |
LI S, HUANG F H. A node role embedding method based on neighborhood clustering coefficient[C]//Proceedings of the 6th International Conference on Data Storage and Data Engineering (DSDE). Washington D. C., USA: IEEE Press, 2023: 1-5. 10.1109/DSDE58527.2023.00007
|
30 |
SUN Y H , JIA M Y , LIU C , et al. Heterogeneous network representation learning based on role feature extraction. Pattern Recognition, 2023, 144, 109870.
doi: 10.1016/j.patcog.2023.109870
|
31 |
李泽水, 冀俊忠, 杨翠翠. 基于边权重信息深度网络嵌入的PPIN功能模块检测. 计算机工程, 2023, 49 (8): 69- 76.
doi: 10.19678/j.issn.1000-3428.0065072
|
|
LI Z S , JI J Z , YANG C C . Functional module detection based on deep network embedding of edge weighing information in PPIN. Computer Engineering, 2023, 49 (8): 69- 76.
doi: 10.19678/j.issn.1000-3428.0065072
|
32 |
KONG Y X , SHI G Y , WU R J , et al. k-core: theories and applications. Physics Reports, 2019, 832, 1- 32.
doi: 10.1016/j.physrep.2019.10.004
|
33 |
RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. struc2vec: learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 385-394. 10.1145/3097983.3098061
|
34 |
YIN H, BENSON A R, LESKOVEC J, et al. Local higher-order graph clustering[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 555-564. 10.1145/3097983.3098069
|
35 |
ROSSI R , AHMED N . The network data repository with interactive graph analytics and visualization. Proceedings of the AAAI Conference on Artificial Intelligence, 2015, 29 (1): 4292- 4293.
|
36 |
YANG D Q, ROSSO P, LI B, et al. NodeSketch: highly-efficient graph embeddings via recursive sketching[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2019: 1162-1172. 10.1145/3292500.3330951
|
37 |
MO Y J, LEI Y J, SHEN J L, et al. Disentangled multiplex graph representation learning[C]//Proceedings of the 40th International Conference on Machine Learning. New York, USA: PMLR, 2023: 24983-25005.
|