1 |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of International Workshop on Semantic Evaluation. San Diego, USA: [s. n. ], 2016: 1-10.
|
2 |
|
3 |
KIRANGE D K , DESHMUKH R R , KIRANGE M D K . Aspect based sentiment analysis SemEval-2014 task 4. Asian Journal of Computer Science & Information Technology, 2014, 4 (8): 1- 10.
|
4 |
JANG H , REMPEL E , ROE I , et al. Tracking public attitudes toward COVID-19 vaccination on tweets in Canada: using aspect-based sentiment analysis. Journal of Medical Internet Research, 2022, 24 (3): e35016.
doi: 10.2196/35016
|
5 |
SAMUEL J , ALI G G M N , RAHMAN M M , et al. COVID-19 public sentiment insights and machine learning for tweets classification. Information, 2020, 11 (6): 314.
doi: 10.3390/info11060314
|
6 |
ZHAO F, SHEN Y C, WU Z, et al. Label-driven denoising framework for multi-label few-shot aspect category detection[EB/OL]. [2023-12-12]. https://arxiv.org/abs/2210.04220v1.
|
7 |
WANG Z Y, IWAIHARA M. Few-shot multi-label aspect category detection utilizing prototypical network with sentence-level weighting and label augmentation[M]//STRAUSS C, AMAGASA T, KOTSIS G, et al. Database and expert systems applications. Berlin, Germany: Springer, 2023: 363-377.
|
8 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-12-12]. http://arxiv.org/abs/1810.04805.
|
9 |
|
10 |
LIU P F , YUAN W Z , FU J L , et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Computing Surveys, 2023, 55 (9): 1- 35.
|
11 |
顾勋勋, 刘建平, 邢嘉璐, 等. 文本分类中Prompt Learning方法研究综述. 计算机工程与应用, 2024, 60 (11): 50- 61.
|
|
GU X X , LIU J P , XING J L , et al. A summary of the research on Prompt Learning methods in text classification. Computer Engineering and Applications, 2024, 60 (11): 50- 61.
|
12 |
LIU X, JI K X, FU Y C, et al. P-tuning v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks[EB/OL]. [2023-12-12]. https://arxiv.org/abs/2110.07602v3.
|
13 |
ZHANG N Y, LI L Q, CHEN X, et al. Differentiable prompt makes pre-trained language models better few-shot learners[EB/OL]. [2023-12-12]. https://arxiv.org/abs/2108.13161v7.
|
14 |
|
15 |
|
16 |
TOH Z, SU J. NLANGP: supervised machine learning system for aspect category classification and opinion target extraction[C]//Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Stroudsburg, USA: Association for Computational Linguistics, 2015: 1-10.
|
17 |
SAEIDI M, BOUCHARD G, LIAKATA M, et al. SentiHood: targeted aspect based sentiment analysis dataset for urban neighbourhoods[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 1546-1556.
|
18 |
TANG D Y, QIN B, LIU T. Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1-10.
|
19 |
WANG W Y, PAN S J, DAHLMEIER D, et al. Recursive neural conditional random fields for aspect-based sentiment analysis[EB/OL]. [2023-12-12]. https://arxiv.org/abs/1603.06679v3.
|
20 |
|
21 |
PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long Papers). New Orleans, USA: Association for Computational Linguistics, 2018: 2227-2237.
|
22 |
|
23 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
24 |
KALYAN K S, RAJASEKHARAN A, SANGEETHA S. AMMUS: a survey of transformer-based pretrained models in natural language processing[EB/OL]. [2023-12-12]. https://arxiv.org/abs/2108.05542v2.
|
25 |
SCHOUTEN K, FRASINCAR F, JONG F. COMMIT-p1wp3: a co-occurrence based approach to aspect-level sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). Dublin, Ireland: Association for Computational Linguistics, 2014: 203-207.
|
26 |
GHADERY E, MOVAHEDI S, FAILI H, et al. An unsupervised approach for aspect category detection using soft cosine similarity measure[EB/OL]. [2023-12-12]. https://arxiv.org/abs/1812.03361v2.
|
27 |
|
28 |
LIU X , ZHENG Y N , DU Z X , et al. GPT understands, too. AI Open, 2024, 5, 208- 215.
doi: 10.1016/j.aiopen.2023.08.012
|
29 |
SONG Y S , WANG T , CAI P Y , et al. A comprehensive survey of few-shot learning: evolution, applications, challenges, and opportunities. ACM Computing Surveys, 2023, 55 (13s): 1- 40.
|
30 |
李子成, 常晓琴, 李雅梦, 等. 基于联合学习的少样本多类别情感分类方法. 北京大学学报(自然科学版), 2023, 59 (1): 57- 64.
|
|
LI Z C , CHANG X Q , LI Y M , et al. A joint learning approach to few-shot learning for multi-category sentiment classification. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59 (1): 57- 64.
|
31 |
李睿凡, 魏志宇, 范元涛, 等. 增强提示学习的少样本文本分类方法. 北京大学学报(自然科学版), 2024, 60 (1): 1- 12.
|
|
LI R F , WEI Z Y , FAN Y T , et al. Enhanced prompt learning for few-shot text classification method. Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60 (1): 1- 12.
|
32 |
|