1 |
陈若虹, 童志成, 吴翠雯. 市政绿篱机械化快速修剪技术分析与应用推广-以西樵镇道路绿化养护项目为例. 现代园艺, 2022(16): 180- 182.
|
|
CHEN R H, TONG Z C, WU C W. Analysis and application promotion of mechanized rapid pruning technology for municipal hedgehogs-taking xiqiao town road greening and maintenance project as an example. Contemporary Horticulture, 2022(16): 180- 182.
|
2 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector. Berlin, Germany: Springer, 2016.
|
3 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
4 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 779-788.
|
5 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
6 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 7263-7271.
|
7 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587.
|
8 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
9 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
10 |
BRANKO Š, MATAVULJ P, MIMIĆ G, et al. Real-time automatic detection of starch particles in ambient air. Agricultural and Forest Meteorology, 2022, 323, 109034.
|
11 |
MEI S, DING W Q, WANG J P. Research on the real-time detection of red fruit based on the you only look once algorithm. Processes, 2024, 12(1): 15.
|
12 |
LI S, TAO T, ZHANG Y, et al. YOLO v7-CS: a YOLO v7-based model for lightweight bayberry target detection count. Agronomy, 2023, 13(12): 2952.
|
13 |
韦锦, 李正强, 许恩永, 等. 基于DA2-YOLOv4算法绿篱识别研究. 中国农机化学报, 2022, 43(9): 122- 130.
|
|
WEI J, LI Z Q, XU E Y, et al. Research on hedge recognition based on DA2-YOLOv4 algorithm. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 122- 130.
|
14 |
JINTASUTTISAK T, EDIRISINGHE E, ELBATTAY A. Deep neural network based date palm tree detection in drone imagery. Computers and Electronics in Agriculture, 2022, 192, 106560.
|
15 |
LI R J, LI Y D, QIN W B, et al. Lightweight network for corn leaf disease identification based on improved YOLO v8s. Agriculture, 2024, 14(2): 220.
|
16 |
|
17 |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2024-02-01]. https://arxiv.org/abs/2206.02424.
|
18 |
|
19 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1580-1589.
|
20 |
DING X H, GUO Y C, DING G G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1911-1920.
|
21 |
DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13733-13742.
|
22 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6848-6856.
|
23 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 122-138.
|
24 |
|
25 |
|
26 |
SHAFAHI A, NAJIBI M, GHIASI M A, et al. Adversarial training for free[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 32-41.
|
27 |
|
28 |
LEE S H, BAE S H. AFI-GAN: improving feature interpolation of feature pyramid networks via adversarial training for object detection. Pattern Recognition, 2023, 138, 109365.
|
29 |
SHENG J J, ZHANG D W, CHEN J X, et al. Towards universal and sparse adversarial examples for visual object tracking. Applied Soft Computing, 2024, 153, 111252.
|
30 |
|
31 |
CISSE M, BOJANOWSKI P, GRAVE E, et al. Parseval networks: improving robustness to adversarial examples[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2017: 854-863.
|
32 |
LI B H, HOU Y T, CHE W X. Data augmentation approaches in natural language processing: a survey. AI Open, 2022, 3, 71- 90.
|
33 |
LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 6153-6162.
|
34 |
KANG M, TING C M, TING F F, et al. RCS-YOLO: a fast andHigh-Accuracy object detector forBrain tumor detection[C]//Proceedings of Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2023: 600-610.
|
35 |
|