作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (12): 346-356. doi: 10.19678/j.issn.1000-3428.0069765

• 开发研究与工程应用 • 上一篇    下一篇

改进膨胀时空图卷积网络的短时交通流预测

罗向龙*(), 徐忠承, 苏勇东, 何西槟, 刘若辰   

  1. 长安大学信息工程学院, 陕西 西安 710018
  • 收稿日期:2024-04-18 修回日期:2024-06-27 出版日期:2025-12-15 发布日期:2024-07-26
  • 通讯作者: 罗向龙
  • 基金资助:
    国家自然科学基金(62001059); 陕西省自然科学基金面上项目(2022JM-056)

Short-Term Traffic Flow Prediction Based on Improved Dilated Temporal-Spatio Graph Convolutional Network

LUO Xianglong*(), XU Zhongcheng, SU Yongdong, HE Xibin, LIU Ruochen   

  1. School of Information and Engineering, Chang'an University, Xi'an 710018, Shaanxi, China
  • Received:2024-04-18 Revised:2024-06-27 Online:2025-12-15 Published:2024-07-26
  • Contact: LUO Xianglong

摘要:

路网交通流预测在智能交通领域起着关键性作用, 交通流不仅具有高度的空间相关性, 同时在时间特征上也存在时间相关性和周期性。现有的时空交通流量预测在时间特征提取方面更多关注交通流的局部时间特征。针对上述问题, 提出一种改进膨胀时空图卷积网络(IDTS-GCN)模型, 以改进的图卷积网络(GCN)为基础提取空间特征, 将膨胀卷积的顺序操作改为并行操作后将膨胀序列嵌入双向长短期记忆(Bi-LSTM)中提取交通流短期局部与宏观长期时间特征, 低膨胀率的序列提取短期局部时间特征, 高膨胀率的序列提取长期宏观时间特征, 在此基础上添加残差连接融合时空特征得到最终预测结果。为了验证IDTS-GCN模型的有效性, 在PeMS04和PeMS08数据集上进行测试, 结果表明, IDTS-GCN模型在两种数据集下相较STSGCN时空联合学习模型, 平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)平均下降了4.917%、3.371%、6.079%和6.291%、5.842%、4.395%。

关键词: 智能运输系统, 交通流预测, 时空特征, 图信号处理, 双向长短期记忆

Abstract:

Traffic flow prediction for road networks plays a key role in intelligent transportation. Traffic flow not only exhibits high spatial correlation but also exhibits long-term correlation and periodicity in time characteristics. Existing spatio-temporal traffic flow prediction models focus more on the local time characteristics of traffic flows through time feature extraction. To address this issue, this study proposes an Improved Dilated Temporal-Spatial Graph Convolution Network (IDTS-GCN) model to extract spatial features based on an improved Graph Convolution Network (GCN). The sequential operation of dilated convolution is changed to a parallel operation, and the dilated series is embedded into Bi-directional Long Short-Term Memory (Bi-LSTM) to extract short-term local and macro-long-term time features of traffic flow. Short-term local temporal features are extracted from sequences with low dilated rates, and long-term macro-temporal features are extracted from sequences with high dilated rates. Accordingly, residual connections are added to fuse the spatio-temporal features to obtain the final prediction. In evaluations on the PeMS04 and PeMS08 datasets, IDTS-GCN reduces the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) by 4.917%, 3.371%, and 6.079% and 6.291%, 5.842%, and 4.395%, respectively, compared with that achieved by the STSGCN spatiotemporal joint learning model.

Key words: Intelligent Transportation Systems (ITS), traffic flow prediction, spatial-temporal features, Graph Signal Processing (GSP), Bi-directional Long Short-Term Memory (Bi-LSTM)