| 1 |
ZHU L , YU F R , WANG Y G , et al. Big data analytics in intelligent transportation systems: a survey. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (1): 383- 398.
doi: 10.1109/TITS.2018.2815678
|
| 2 |
ATLURI G , KARPATNE A , KUMAR V . Spatio-temporal data mining. ACM Computing Surveys, 2019, 51 (4): 1- 41.
|
| 3 |
ZHAO J H , NI S J , YANG L H , et al. Multiband cooperation for 5G HetNets: a promising network paradigm. IEEE Vehicular Technology Magazine, 2019, 14 (4): 85- 93.
doi: 10.1109/MVT.2019.2935793
|
| 4 |
YUAN H T , LI G L . A survey of traffic prediction: from spatio-temporal data to intelligent transportation. Data Science and Engineering, 2021, 6 (1): 63- 85.
doi: 10.1007/s41019-020-00151-z
|
| 5 |
XIE P , LI T R , LIU J , et al. Urban flow prediction from spatiotemporal data using machine learning: a survey. Information Fusion, 2020, 59, 1- 12.
doi: 10.1016/j.inffus.2020.01.002
|
| 6 |
KOESDWIADY A , SOUA R , KARRAY F . Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Transactions on Vehicular Technology, 2016, 65 (12): 9508- 9517.
doi: 10.1109/TVT.2016.2585575
|
| 7 |
周晓, 唐宇舟, 刘强. 基于卡尔曼滤波的道路平均速度预测模型研究. 浙江工业大学学报, 2020, 48 (4): 392-396, 404.
|
|
ZHOU X , TANG Y Z , LIU Q . Research on road average speed prediction model based on Kalman filter. Journal of Zhejiang University of Technology, 2020, 48 (4): 392-396, 404.
|
| 8 |
杨立宁, 李艳婷. 基于SVD和ARIMA的时空序列分解与预测. 计算机工程, 2021, 47 (3): 53- 61.
doi: 10.19678/j.issn.1000-3428.0056885
|
|
YANG L N , LI Y T . Spatio-temporal sequence decomposition and prediction based on SVD and ARIMA. Computer Engineering, 2021, 47 (3): 53- 61.
doi: 10.19678/j.issn.1000-3428.0056885
|
| 9 |
KUMAR S V . Traffic flow prediction using Kalman filtering technique. Procedia Engineering, 2017, 187, 582- 587.
doi: 10.1016/j.proeng.2017.04.417
|
| 10 |
LINT H , HINSBERGEN C V . Short-term traffic and travel time prediction models. Artificial Intelligence Applications to Critical Transportation Issues, 2012, 22 (1): 22- 41.
|
| 11 |
SUMALATHA V, DINGARI M, JAYALAKSHMI C. Short term road traffic flow forecasting using multi layer perceptron neural networks[C]//Proceedings of ICMSA'19. Hyderabad, India: American Institute of Physics Publishing, 2020: 311-325.
|
| 12 |
DEKEL O , SINGER Y . Support vector machines on a budget. Neural Information Processing Systems, 1997, 28 (7): 779- 784.
|
| 13 |
YANG Y J, DUAN Z Y. A novel prediction method of traffic flow: least squares support vector machines based on spatial relation[C]//Proceedings of International Conference of Transportation Professionals. Washington D.C., USA: IEEE Press, 2014: 1807-1818.
|
| 14 |
谷远利, 张源, 芮小平, 等. 基于免疫算法优化LSSVM的短时交通流预测. 吉林大学学报(工学版), 2019, 49 (6): 1852- 1857.
|
|
GU Y L , ZHANG Y , RUI X P , et al. Short-term traffic flow prediction based on LSSVM optimized by immune algorithm. Journal of Jilin University(Engineering and Technology Edition), 2019, 49 (6): 1852- 1857.
|
| 15 |
WU H , GAO L , ZHANG Z . Analysis of crash data using quantile regression for counts. Journal of Transportation Engineering, 2014, 140 (4): 04014026.
|
| 16 |
PARK J, LI D, MURPHEY Y L, et al. Real time vehicle speed prediction using a neural network traffic model[C]//Proceedings of the 2011 International Joint Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2011: 2991-2996.
|
| 17 |
XIA D W , YANG N , JIAN S Y , et al. SW-BiLSTM: a spark-based weighted BiLSTM model for traffic flow forecasting. Multimedia Tools and Applications, 2022, 81 (17): 23589- 23614.
doi: 10.1007/s11042-022-12039-3
|
| 18 |
张惠臻, 高正凯, 李建强, 等. 基于循环神经网络的城市轨道交通短时客流预测. 吉林大学学报(工学版), 2023, 53 (2): 430- 438.
|
|
ZHANG H Z , GAO Z K , LI J Q , et al. Short-term passenger flow forecasting of urban rail transit based on recurrent neural network. Journal of Jilin University(Engineering and Technology Edition), 2023, 53 (2): 430- 438.
|
| 19 |
ABDULJABBAR R L , DIA H , TSAI P W . Unidirectional and bidirectional LSTM models for short-term traffic prediction. Journal of Advanced Transportation, 2021, 2021, 5589075.
|
| 20 |
SHI X M , QI H , SHEN Y M , et al. A spatial-temporal attention approach for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (8): 4909- 4918.
doi: 10.1109/TITS.2020.2983651
|
| 21 |
罗向龙, 郭凰, 廖聪, 等. 时空相关的短时交通流宽度学习预测模型. 计算机工程与应用, 2022, 58 (9): 181- 186.
|
|
LUO X L , GUO H , LIAO C , et al. Spatiotemporal short-term traffic flow prediction based on broad learning system. Computer Engineering and Applications, 2022, 58 (9): 181- 186.
|
| 22 |
LIU Q C , WANG B C , ZHU Y Q . Short-term traffic speed forecasting based on attention convolutional neural network for arterials. Computer-Aided Civil and Infrastructure Engineering, 2018, 33 (11): 999- 1016.
doi: 10.1111/mice.12417
|
| 23 |
CHENG Z Y , LU J , ZHOU H J , et al. Short-term traffic flow prediction: an integrated method of econometrics and hybrid deep learning. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (6): 5231- 5244.
doi: 10.1109/TITS.2021.3052796
|
| 24 |
RANJAN N , BHANDARI S , ZHAO H P , et al. City-wide traffic congestion prediction based on CNN, LSTM and transpose CNN. IEEE Access, 2020, 8, 81606- 81620.
doi: 10.1109/ACCESS.2020.2991462
|
| 25 |
ISHIDA S , TERAYAMA K , KOJIMA R , et al. Prediction and interpretable visualization of retrosynthetic reactions using graph convolutional networks. Journal of Chemical Information and Modeling, 2019, 59 (12): 5026- 5033.
doi: 10.1021/acs.jcim.9b00538
|
| 26 |
LI Z R , GONG J W , LU C , et al. Interactive behavior prediction for heterogeneous traffic participants in the urban road: a graph-neural-network-based multitask learning framework. ASME Transactions on Mechatronics, 2021, 26 (3): 1339- 1349.
doi: 10.1109/TMECH.2021.3073736
|
| 27 |
WU Z H , PAN S R , CHEN F W , et al. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (1): 4- 24.
doi: 10.1109/TNNLS.2020.2978386
|
| 28 |
LI W , WANG X , ZHANG Y W , et al. Traffic flow prediction over Muti-sensor data correlation with graph convolution network. Neurocomputing, 2021, 427, 50- 63.
doi: 10.1016/j.neucom.2020.11.032
|
| 29 |
CHEN C , LI K L , TEO S G , et al. Gated residual recurrent graph neural networks for traffic prediction. Artificial Intelligence, 2019, 33 (1): 485- 492.
|
| 30 |
MA M Y , NA S , WANG H Y . AEGCN: an autoencoder-constrained graph convolutional network. Neurocomputing, 2021, 432, 21- 31.
doi: 10.1016/j.neucom.2020.12.061
|
| 31 |
YIN X Y , WU G Z , WEI J Z , et al. Multi-stage attention spatial-temporal graph networks for traffic prediction. Neurocomputing, 2021, 428, 42- 53.
doi: 10.1016/j.neucom.2020.11.038
|
| 32 |
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2018: 3634-3640.
|
| 33 |
GUO S N , LIN Y F , FENG N , et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Artificial Intelligence, 2019, 33 (1): 922- 929.
|
| 34 |
SONG C , LIN Y F , GUO S N , et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. Artificial Intelligence, 2020, 34 (1): 914- 921.
|
| 35 |
KINGMA D , BA J . Adam: a method for stochastic optimization. Computer Science, 2015, 32, 112- 121.
|
| 36 |
WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2019: 1907-1913.
|